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• Dynamic Games: Extensive Form Games

• Repeated Games

• Negotiation: Non-Cooperative Approach

• Cooperative Game Theory

• Equilibrium Refinement and signaling

• Strategic Information Transmission
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Game Theory = (Rational) decision theory for multiple agents who are strategically

interdependent

☞ Interactive decision theory

☞ Analysis of conflicts

Game = interactive decision situation in which the payoff/utility/satisfaction of

each player depends not only on his own decision but also on others’ decisions

☞ Economic, social, political, military, biological situations
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Examples.

• Imperfect competition between firms: the price is not given but determined by

the decision of several agents

• Bidders competing in an auction: the outcome (i.e., the winner and the price)

depends on the bids of all agents and on the type of auction used

• Political candidates competing for votes

• Jury members deciding on a verdict

• Animals fighting over prey

➥ Not necessarily strictly competitive, win-loose situations; zero-sum vs.

non-zero-sum games . . . image (“loose-loose situation”) . . .
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3 General Topics in Game Theory

(1) Non-cooperative or strategic game theory

– Normal/strategic form / extensive form

– Perfect information / Imperfect Information

(2) Cooperative, axiomatic or coalitional game theory

(3) Social choice, implementation, theory of incentives, mechanism design

(1) ➨ Independent players, strategies, preferences / detailed description, equilibrium

concept

(2) ➨ coalitions, values of coalitions, binding contracts / axiomatic approach

(3) ➨ we modify the games (rules, transfers, . . . ) in order to get solutions satisfying

some properties like Pareto-optimality, anonymity, . . . Contracts, full commitment
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First example: Bus vs. Car

N = [0, 1] = population of individuals in a town (players)

Possible choices for each individual: “take the car” or “take the bus” (actions)

x % take the bus ⇒ payoffs (utilities) u(B, x), u(V, x) (preferences)

u(V, ·)

u(B, ·)

0 100

% of individuals
taking the busx

w
Equilibrium

wSocial optimum

u(V, x) > u(B, x) for every x ⇒ everybody takes the car (x = 0)

⇒ u(V, 0) for everybody ⇒ inefficient comparing to x = 100
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New policy (taxes, toll, bus lines, . . . )

➠ new setting

u(V, ·)

u(B, ·)

% of individuals
taking the busx x′x∗

0 100

w

➠ New (Nash) equilibrium, more efficient (but still not Pareto optimal)
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Alternative configuration: multiplicity of equilibria

-

6 6

0 100

% of individuals
taking the bus

u(V, ·)

u(B, ·)

A

B

C

w

w

w

A : stable and inefficient (Pareto dominated) equilibrium

B : unstable and inefficient equilibrium

C : stable and efficient equilibrium
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✍ Find the Nash equilibria in the following configuration. Which one is stable?

Pareto efficient?

-

6 6

0 100

% of individuals
taking the bus

u(B, ·)

u(V, ·)
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Second Example: Dividing the Cake

N = {1, 2} = two kids (the players)

The first kid divide the cake into two portions and let the second kid choose his

portion (the rules : actions, ordering, . . . )

Aim of each kid: having the largest piece of cake (preferences)

➥ Decision tree:

Extensive form game
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Unequal portions

Equal portions

First kid

smallest portion

≃ half

largest portion

≃ half

Second kid

smallest portion

large portion

for the first

largest portion

small portion

for the first

Second kid
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Best strategy for the first kid: divide the cake into equal portions

➠ Fair solution, even if players are egoist, do not care about altruism or equity
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Other possible representation of the game:

Table of outcomes or Strategic/normal form game

• Strategies of the first kid:

E = divide (approximately) the cake into equal portions

I = divide the cake into unequal portions

• Strategies of the second kid:

G = always take the largest portion P = always take the smallest portion

(P | E, G | I) = take the largest portion only if portions are unequal

(G | E, P | I) = take the “largest” portion only if portions are (almost) equal

1st kid

2nd kid

G P (P | E, G | I) (G | E, P | I)

E ≃ half ≃ half ≃ half ≃ half

I small portion large portion small portion large portion
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✍ Other simple example (except for Charlie Brown) of backward induction:

image

• Represent this situation into an extensive form game (decision tree) and find

players’ optimal strategies

• Represent this situation into a normal form game (table of outcomes)
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Third Example: The Strategic Value of Information

Two firms

Two possible projects: a and b

Firm 1 chooses one of the two projects. Firm 2 chooses one of the two projects

after having observed firm 1’s choice

Two equally likely states/situations (Pr[α] = Pr[β] = 1/2):

α: Only project a is profitable

β: Only project b is profitable

• Neither firm 1 nor firm 2 is informed.
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Game tree:

Project b

Project a

Firm 1

Project b
(6, 0) if α

(0, 6) if β
→ (3, 3)

Project a

(2, 2) if α

(0, 0) if β
→ (1, 1)

Firm 2

Project b
(0, 0) if α

(2, 2) if β
→ (1, 1)

Project a

(0, 6) if α

(6, 0) if β
→ (3, 3)

Firm 2
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Game tree:

Project b

Project a

Firm 1

Project b
(6, 0) if α

(0, 6) if β
→ (3, 3)

Project a

(2, 2) if α

(0, 0) if β
→ (1, 1)

Firm 2

Project b
(0, 0) if α

(2, 2) if β
→ (1, 1)

Project a

(0, 6) if α

(6, 0) if β
→ (3, 3)

Firm 2

➠ Firm 2 always chooses a project different from firm 1, so each firm’s expected

payoff is 3
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• Firm 1 informed and Firm 2 uninformed.

Game tree (with imperfect information):

βα Nature

b

a

Firm 1

b

a

Firm 1

Firm 2

Firm 2b

(6, 0)

a

(2, 2)

b

(0, 6)

a

(0, 0)

b

(0, 0)

a

(0, 6)

b

(2, 2)

a

(6, 0)
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• Firm 1 informed and Firm 2 uninformed.

Game tree (with imperfect information):

βα Nature

b

a

Firm 1

b

a

Firm 1

Firm 2

Firm 2b

(6, 0)

a

(2, 2)

b

(0, 6)

a

(0, 0)

b

(0, 0)

a

(0, 6)

b

(2, 2)

a

(6, 0)

➠ Firm 2 chooses the same project as firm 1, so each firm expected payoff is 2 < 3
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• Firm 1 informed and Firm 2 uninformed.

Game tree (with imperfect information):

βα Nature

b

a

Firm 1

b

a

Firm 1

Firm 2

Firm 2b

(6, 0)

a

(2, 2)

b

(0, 6)

a

(0, 0)

b

(0, 0)

a

(0, 6)

b

(2, 2)

a

(6, 0)

➠ Firm 2 chooses the same project as firm 1, so each firm expected payoff is 2 < 3

➠ The strategic value of information is negative for firm 1! (6= individual decision

problem). But Firm 2 knows that Firm 1 knows . . .



Game Theory Introduction and Decision Theory

✍ Other examples:

M. Shubik (1954) “Does the fittest necessarily survive” pdf

• Understand the resolution of the game

• Do the example with other abilities

• Think about applications (e.g., elections, diplomacy, . . . )

See also “The Three-Way Duel” from Dixit and Nalebuff (1991) pdf
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General Definition of a Game

• Set of players

• Rules of the game (who can do what and when)

• Players’ information (about the number of players, the rules, players’

preferences, others’ information)

• Players’ preferences on the outcomes of the game. Usually, von Neumann and

Morgenstern utility functions are assumed

Game theory 6= decision theory, optimization

• Solving the game is not automatic: the solution concept and the solution itself

are typically not unique

• Defining rationality can lead to a circular definition

• The problem of iterated knowledge

⇒ which solution concept is appropriate, “reasonable”?
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Short History

• Cournot (1838, Chap. 7): duopoly equilibrium

• Edgeworth (1881): contract curve, notion of the “core”

• Darwin (1871): evolutionary biology, natural selection

• Zermelo (1913): winning positions in chess

• Emile Borel (1921): mixed (random) strategy

• Von Neumann (1928): maxmin theorem (strict competition)

• Von Neumann and Morgenstern (1944), “Theory of Games and Economic

Behavior”

• Nash (1950b, 1951): equilibrium concept, non zero-sum games

• Nash (1950a, 1953): bargaining solution
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• Shapley (1952–1953) : “core” and value of cooperative games

• Aumann (1959): repeated games and “folk theorems”

• Selten (1965, 1975), Kreps and Wilson (1982): equilibrium refinements

• Harsanyi (1967–1968): incomplete information (type space)

• Aumann and Maschler (1966, 1967); Stearns (1967); Aumann et al. (1968):

repeated games with incomplete information

• Aumann (1974, 1987): correlated equilibrium, epistemic conditions

• Lewis (1969), Aumann (1976): common knowledge
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Reminder: Decision Theory

Decision under certainty: Preference relation � over consequences C

Decision under uncertainty: Preference relation � over lotteries L = ∆(C)

Example of a lottery (roulette “game”):

Set of outcomes = {00, 0, 1, . . . , 36} (probability 1/38 each)
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Consider the two following alternatives:

• a : Bet 10e on even

• a′ : Don’t bet

➠ Consequences C = {−10, 0, 10}

Lotteries induced by a and a′:

20
38 −10

18
38

10

0
0L

0
−10

0
10

1
0and L′
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Possible decision criterion: mathematical expectation:
∑

i

pi xi

20
38 −10

18
38

10

0
0L

0
−10

0
10

1
0L′

E(L) =
18

38
10 −

20

38
10 = −

20

38
E(L′) = 0
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But, with this criterion:

• The risk attitude of the decisionmaker is ignored

• Only monetary consequences can be considered

• Saint-Petersburg paradox

Saint-Petersburg paradox

Toss repeatedly a fair coin until heads occurs

When heads occurs in the kth round the payoff is 2k euros

Expected payoff of the bet:

∞∑

k=1

1

2k
2k = 1 + 1 + 1 + · · · = ∞

However, most people would not pay more than 100 and even 10 euros for such a

bet. . .
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In 1738 Daniel Bernoulli (1700–1782) proposes to consider a decreasing marginal

utility (satisfaction) for money and to evaluate a bet by its expected utility

For example, the expected logarithm of the payoff is:

∞∑

k=1

1

2k
ln(2k) = (ln 2)

∞∑

k=1

k

(
1

2

)k

= (ln 2)

[
2

∞∑

k=1

k

(
1

2

)k

−
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k=1

k

(
1

2

)k
]

= (ln 2)

[
∞∑

k=0

(k + 1)

(
1

2

)k

−
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k=1

k

(
1

2

)k
]

= (ln 2)

[
1 +
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(
1

2
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In 1738 Daniel Bernoulli (1700–1782) proposes to consider a decreasing marginal

utility (satisfaction) for money and to evaluate a bet by its expected utility

For example, the expected logarithm of the payoff is:

∞∑

k=1

1

2k
ln(2k) = (ln 2)

∞∑

k=1

k

(
1

2

)k

= (ln 2)

[
2

∞∑

k=1

k

(
1

2

)k

−
∞∑

k=1

k

(
1

2

)k
]

= (ln 2)

[
∞∑

k=0

(k + 1)

(
1

2

)k

−
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k=1

k

(
1

2

)k
]

= (ln 2)

[
1 +

∞∑

k=1

(
1

2

)k
]

= ln 4

⇒ Value of a certain payoff equal to 4 euros
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Critics of Bernoulli’s suggestion:

• Why ln? (ad hoc, there are other increasing and concave functions)

• Why the same form of function for every individual?

• Why should the decision be based on the expected value of the utilities?

• The expected value may be justified in the long run, if the bet is repeated many

times. But why can we apply it if the individual plays the game only once?

1944: von Neumann and Morgenstern give a rigorous axiomatics for the solution

proposed by Bernoulli
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Figure 1: John von Neumann (1903–1957)
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Idea of vNM construction:

Assume

A ≻ B ≻ C

Under certainty, all values a > b > c are appropriate to represent this ordinal

preference

Consider the bets

1
BL

1 − p
C

p
A

et L′

and assume L � L′ ⇔ p ≥ 2/3
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Then, we restrict the values to

a >
2

3
a +

1

3
c > c

and we have

u(b) − u(c) = 2[u(a) − u(b)] =
2

3
(a − c)

�
These differences of utilities from one consequence to another one represent the

individual’s attitude towards risk, not a scale of satisfaction
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Assumptions of von Neumann and Morgenstern:

• Rationality, or complete pre-order.

– Completeness. For all L, L′ ∈ L, we have L � L′ or L′ � L (or both)

– Transitivity. For all L, L′, L′′ ∈ L, if L � L′ and L′ � L′′, then L � L′′

• Continuity. For all L, L′, L′′ ∈ L, the sets

{α ∈ [0, 1] : αL + (1 − α)L′ � L′′}

and {α ∈ [0, 1] : L′′ � αL + (1 − α)L′}

are closed. (L � L′ � L′′ ⇒ ∃ α ∈ [0, 1], αL + (1 − α)L′′ ∼ L′)

• Independence axiom. For all L, L′, L′′ ∈ L and α ∈ (0, 1) we have

L � L′ ⇔ αL + (1 − α)L′′ � αL′ + (1 − α)L′′
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Theorem of von Neumann and Morgenstern.

If the preference relationship � over the set of lotteries L is rational, continuous

and satisfies the independence axiom, then it admits an VNM expected utility

representation

That is, there exist values u(c) for the consequences c ∈ C such that for all lotteries

L = (p1, . . . , pC) and L′ = (p′

1, . . . , p
′

C
) we have

L � L′ ⇔
∑

c∈C

pc u(c)

︸ ︷︷ ︸
U(L)

≥
∑

c∈C

p′

c u(c)

︸ ︷︷ ︸
U(L′)
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Property. (Cardinality) Let U : L → R be a VNM expected utility function for �

over L. The function Ũ : L → R is another VNM expected utility function for � if

and only if there exist β > 0 and γ ∈ R such that

Ũ(L) = βU(L) + γ

for all L ∈ L.
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Property. (Cardinality) Let U : L → R be a VNM expected utility function for �

over L. The function Ũ : L → R is another VNM expected utility function for � if

and only if there exist β > 0 and γ ∈ R such that

Ũ(L) = βU(L) + γ

for all L ∈ L.

Monetary consequences: Lottery = random variable represented by a distribution

function F

For example

1
2

50e

1
4

20e

1
4

30eL −→ F (x) =





0 if x < 20

1/4 if x ∈ [20, 30)

1/2 if x ∈ [30, 50)

1 if x ≥ 50
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x
20e 30e 50e0

1
4

1
2

1

F

r

r

r
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In this setting F is evaluated by the decisionmaker with

U(F ) =

∫

C

u(c) dF (c)

=

∫

C

u(c)f(c) dc if the density f exists
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Approximation and Mean/Variance Criterion

Lottery (random variable) x̃

Taylor approximation of the (Bernoulli) utility function u around x = E(x̃) :

u(x) = u(x) +
u′(x)

1!
(x − x) +

u′′(x)

2!
(x − x)

2
+

u′′′(x)

3!
(x − x)

3
+ · · ·

⇒ U(x̃) = E[u(x̃)] =

= u(x) +
u′′(x)

2!
E[(x̃ − x)2]︸ ︷︷ ︸

σ2
x

+
u′′′(x)

3!
E[(x̃ − x)3] + · · ·
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Approximation and Mean/Variance Criterion

Lottery (random variable) x̃

Taylor approximation of the (Bernoulli) utility function u around x = E(x̃) :

u(x) = u(x) +
u′(x)

1!
(x − x) +

u′′(x)

2!
(x − x)

2
+

u′′′(x)

3!
(x − x)

3
+ · · ·

⇒ U(x̃) = E[u(x̃)] =

= u(x) +
u′′(x)

2!
E[(x̃ − x)2]︸ ︷︷ ︸

σ2
x

+
u′′′(x)

3!
E[(x̃ − x)3] + · · ·

⇒ the expected utility of a lottery may incorporate every moment of the distribution
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Examples.

• Linear utility function u(x) = x ⇒ mathematical expectation criterion U(x̃) = x

• Quadratic utility function u(x) = α + βx + γx2 ⇒ mean/variance criterion

(Markowitz, 1952)

U(x̃) = α + βx + γ(x2 + σ2
x)

used in the CAPM “Capital Asset Pricing Model”
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Risk Aversion

• An agent is risk averse if

δE(F ) � F ∀ F ∈ L

• An agent is strictly risk averse if

δE(F ) ≻ F ∀ F ∈ L, F 6= δE(F )

• An agent is risk neutral if

δE(F ) ∼ F ∀ F ∈ L
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If the preference relation � can be represented by an expected utility function, then

the agent is risk adverse if for all lotteries F

u[E(F )] ≡ u

(∫
c dF (c)

)
≥

∫
u(c) dF (c) ≡ U(F )

(Jensen inequality for concave utility functions)
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If the preference relation � can be represented by an expected utility function, then

the agent is risk adverse if for all lotteries F

u[E(F )] ≡ u

(∫
c dF (c)

)
≥

∫
u(c) dF (c) ≡ U(F )

(Jensen inequality for concave utility functions)

⇒ An agent is (strictly) risk averse if and only if his utility function u is (strictly)

concave. An agent is risk neutral if and only if his utility function u is linear
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Example:

1/2
3

1/2
1

F = ( 1
2
, 1; 1

2
, 3) =

x

u

1 2 3

u(1)

u(2)

u(3)

U(F )

(a) Risk aversion

x

u

1 2 3

u(1)

u(3)

U(F )

(b) Neutrality towards risk
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Further readings:

• Gollier (2001) : “The Economics of Risk and Time”, Chapters 1, 2, 3 and 27

• Fishburn (1994) : “Utility and Subjective Probability”, in “Handbook of Game

Theory” Vol. 2, Chap. 39

• Karni and Schmeidler (1991) : “Utility Theory with Uncertainty”, in

“Handbook of Mathematical Economics” Vol. 4

• Kreps (1988) : “Notes on the Theory of Choice”

• Mas-Colell et al. (1995) : “Microeconomic Theory”, Sections 1.A, 1.B, 3.C,

and Chapter 6

• Myerson (1991) : “Game Theory”, Chapter 1



Game Theory Introduction and Decision Theory

References
Aumann, R. J. (1959): “Acceptable Points in General Cooperative n-Person Games,” in Contributions to the Theory

of Games IV, ed. by H. W. Kuhn and R. D. Luce, Princeton: Princeton Univ. Press., 287–324.

——— (1974): “Subjectivity and Correlation in Randomized Strategies,” Journal of Mathematical Economics, 1, 67–96.

——— (1976): “Agreeing to Disagree,” The Annals of Statistics, 4, 1236–1239.

——— (1987): “Correlated Equilibrium as an Expression of Bayesian Rationality,” Econometrica, 55, 1–18.

Aumann, R. J. and M. Maschler (1966): “Game Theoretic Aspects of Gradual Disarmament,” Report of the U.S.

Arms Control and Disarmament Agency, ST-80, Chapter V, pp. 1–55.

——— (1967): “Repeated Games with Incomplete Information: A Survey of Recent Results,” Report of the U.S. Arms

Control and Disarmament Agency, ST-116, Chapter III, pp. 287–403.

Aumann, R. J., M. Maschler, and R. Stearns (1968): “Repeated Games with Incomplete Information: An

Approach to the Nonzero Sum Case,” Report of the U.S. Arms Control and Disarmament Agency, ST-143, Chapter

IV, pp. 117–216.
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