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Normal Form Games
(Static Games with Complete Information)

Outline
(September 3, 2007)

• Definitions and examples

• Nash Equilibrium

• Mixed Strategies

• Maxmin Strategies and Zero-Sum Games

• Iterated Elimination of Dominated Strategies
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Definition. A normal or strategic form game is given by:

• N = {1, . . . , n}, the set of players

• Si, the non-empty set of actions or pure strategies of player i

• ui : S1 × · · · × Sn
︸ ︷︷ ︸

S

→ R, the utility or payoff function of player i

☞ Player i’s payoff not only depends on his own action but also on others’ actions

Strategy profile, or outcome:

s = (s1, . . . , sn) ∈ S = S1 × · · · × Sn
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Example : Cournot Duopoly

Firm i = 1, 2 produces si ∈ [0, 1] with 0 fixed cost and constant marginal cost

λi > 0

Linear inverse demand: p(s1 + s2) = a − b (s1 + s2), where a > λi, b > 0

Profit of firm i :

p(s1 + s2) si − λi si = si(a − b(s1 + s2) − λi)

= b si((a/b) − (s1 + s2) − (λi/b))

= b si(−θi − s1 − s2)

where θi = λi−a
b

< 0

Risk neutrality and cardinality ⇒ ui(s1, s2) = si(−θi − s1 − s2)

Normal form game: N = {1, 2}, S1 = S2 = [0, 1], u1 and u2 above
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A normal form game 〈N, (Si)i∈N , (ui)i∈N 〉 is finite if the sets of players and

actions are finite (the Cournot duopoly is not finite)

2-player game:

· · · s2 · · ·
... · · · · · · · · ·

s1

... u1(s1, s2); u2(s1, s2)
...

... · · · · · · · · ·

3-player game with 2 actions per player:

s2 s′2
s1 u(s1, s2, s3) u(s1, s′2, s3)

s′1 u(s′1, s2, s3) u(s′1, s
′

2, s3)

s3

s2 s′2
s1 u(s1, s2, s′3) u(s1, s′2, s

′

3)

s′1 u(s′1, s2, s′3) u(s′1, s
′

2, s
′

3)

s′3

where u(·) = (u1(·), u2(·), u3(·))
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Prisoners Dilemma.

N = {1, 2}, S1 = {D, C}, S2 = {D, C}

S = {(D, D), (D, C), (C, D), (C, C)}

D C

D (1, 1) (3, 0)

C (0, 3) (2, 2)

image

No player should cooperate whatever the action of the other player

➥ Dilemma between individual and collective rationality
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✍ Consider the Cournot duopoly with λ1 = λ2 = b = 1 and a = 4 assuming that

firm i can only choose between si = 1 (high production) and si = 3/4 (low

production)

Show that it is equivalent to the following prisoners dilemma

High production Low production

High production (10 000, 10 000) (12 500, 9 375)

Low production ( 9 375, 12 500) (11 250, 11 250)

✍ A variant of the prisoners dilemma with asymmetric players and where

cooperation is always better for one player pdf
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Action si of player i weakly dominates action s′i if

∀ s−i ∈ S−i, ui(si, s−i) ≥ ui(s′i, s−i)

∃ s−i ∈ S−i, ui(si, s−i) > ui(s′i, s−i)

Action si strictly dominates action s′i if

∀ s−i ∈ S−i, ui(si, s−i) > ui(s′i, s−i)

An action is strictly/weakly dominant if it dominates strictly/weakly all the others

Example. In the following game H weakly dominates M , M weakly dominates B

and H strictly dominates B. There is no dominance relation for player 2

G D

H (2, 0) (1, 0)

M (2, 2) (0, 0)

B (1, 0) (0, 2)
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☞ Dominance is not sufficient to solve lots of games

Coordination game.

a b

a (2, 2) (0, 0)

b (0, 0) (1, 1)

Battle of sexes.

a b

a (3, 2) (1, 1)

b (0, 0) (2, 3)
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Chicken game. image

a b

a (2, 2) (1, 3)

b (3, 1) (0, 0)

Stag hunt.

a b

a (3, 3) (0, 2)

b (2, 0) (1, 1)



Game Theory Normal Form Games (Part 1)

Zero-Sum (Strictly Competitive) Games



Game Theory Normal Form Games (Part 1)

Zero-Sum (Strictly Competitive) Games

Matching pennies

G D

G (−1, 1) (1,−1)

D (1,−1) (−1, 1)



Game Theory Normal Form Games (Part 1)

Zero-Sum (Strictly Competitive) Games

Matching pennies

G D

G (−1, 1) (1,−1)

D (1,−1) (−1, 1)

Paper, Rock, Scissors.

P R S

P (0, 0) (1,−1) (−1, 1)

R (−1, 1) (0, 0) (1,−1)

S (1,−1) (−1, 1) (0, 0)
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Nash Equilibrium

Figure 1: John F. Nash Jr (1928– )

Stability concept: situation in which no player has a unilateral incentive to deviate

from his strategy
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Definition. A Nash equilibrium (in pure strategies) of

〈N, (Si)i∈N , (ui)i∈N 〉

is a profile of actions s∗ = (s∗1, . . . , s∗n) ∈ S such that the action of each player is a

best response to others actions, i.e.,

ui(s
∗

i , s∗
−i) ≥ ui(si, s∗

−i), ∀ si ∈ Si, ∀ i ∈ N

If each player i strictly prefers action s∗i , i.e.,

ui(s
∗

i , s∗
−i) > ui(si, s∗

−i), ∀ si 6= s∗i , ∀ i ∈ N

then s∗ is a strict Nash equilibrium
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Proposition.

➢ If si is strictly dominated then si is never played at a Nash equilibrium

➢ If si is strictly dominant for all i ∈ N then s = (si)i∈N is the unique Nash

equilibrium

➢ If si is weakly dominant for all i ∈ N then s = (si)i∈N is a Nash equilibrium

(not necessarily unique)

Proof. ✍ (by definition) �
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✍ Nash equilibria and Pareto optimal solutions in the previous finite games?

Example. Two players can share 2 euros. They simultaneously announce s1,

s2 ∈ [0, 2]. If s1 + s2 ≤ 2 then each player i gets the quantity si he asked for.

Otherwise, if s1 + s2 > 2, they get nothing

✍ Nash equilibria and Pareto optimal solutions?

✍ Find a 3-action, 2-player game with exactly one Nash equilibrium in pure

strategies, which is Pareto dominated and such that the strategies of both players

are weakly dominated

✍ Find a 3-action, 2-player game with exactly one Nash equilibrium in pure

strategies, which is Pareto optimal and such that the strategies of both players are

weakly dominated
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Concretely, how players coordinate their decisions on a specific equilibrium?

➥ Focal point (Thomas C. Schelling, 1921– ), Nobel prize in Economics in

2005 (with Robert J. Aumann) (image):

Equilibrium that players tend to play when they are not able to communicate

because it seems natural, special or relevant to both of them
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Application. International Negotiations / Public Good

n countries negotiate their individual level of pollution si ≥ 0. The payoff of

country i is

ui(s1, . . . , sn) = v(si) −
n∑

j=1

sj

where v′ > 0 > v′′ and v′(0) > 1, e.g., v(x) = ln(x)

Each player has a dominant action:

∂ui

∂si

(s) = 0 ⇔ v′(si) = 1

⇒ Unique and symmetric NE: each country chooses s∗i such that v′(s∗i ) = 1. E.g.,

if v(x) = ln(x) then s∗ = (1, . . . , 1)
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Action profile s = (si)i that maximizes social welfare

n∑

i=1

ui(s1, . . . , sn) =
n∑

i=1

v(si) − n
n∑

j=1

sj

is such that for every k,

∂
∑n

i=1
ui

∂sk

(s) = 0, i.e., v′(sk) = n

⇒ The NE is Pareto dominated

v′′ < 0 ⇒ v′ ց ⇒ s∗i > si : at equilibrium, levels of pollution are too high



Game Theory Normal Form Games (Part 1)

Tax rate θ :



Game Theory Normal Form Games (Part 1)

Tax rate θ :

ui(s1, . . . , sn) = v(si) −
n∑

j=1

sj − θsi +
1

n

n∑

j=1

θsj



Game Theory Normal Form Games (Part 1)

Tax rate θ :

ui(s1, . . . , sn) = v(si) −
n∑

j=1

sj − θsi +
1

n

n∑

j=1

θsj

Dominant action:



Game Theory Normal Form Games (Part 1)

Tax rate θ :
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Tax rate θ :

ui(s1, . . . , sn) = v(si) −
n∑

j=1

sj − θsi +
1

n

n∑

j=1

θsj

Dominant action:

∂ui

∂si

(s) = 0 ⇔ v′(s∗i ) = 1 + θ −
1

n
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Tax rate θ :

ui(s1, . . . , sn) = v(si) −
n∑

j=1

sj − θsi +
1

n

n∑

j=1

θsj

Dominant action:

∂ui

∂si

(s) = 0 ⇔ v′(s∗i ) = 1 + θ −
1

n
θ = 1 + θ

(
n − 1

n

)

The NE is equivalent to the social optimum if

1 + θ

(
n − 1

n

)

= n, i.e., θ = n
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Application. Route Choice and the Braess Paradox

Four drivers, starting from the same point at the same time, must choose a route to

reach a common destination. Two possible routes: East or West
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Nash equilibria: 2 drivers pass West and 2 drivers pass East, with 30 and 29.9

minutes travel time, respectively
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New route (tunnel) from East to West (no change on the other routes)

4 itineraries: East, West, East and tunnel, West and tunnel (the last one is strictly

dominated)
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Nash equilibria: 2 drivers pass East and tunnel, 1 West, and 1 East
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➠ Each driver’s travel time is 32 minutes

➠ The building of the tunnel, without modifying other routes’ capacity, has

increased the travel time of each driver!
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Nash Equilibrium and Best Responses

Best Response of player i to s−i :

BRi(s−i) = arg max
si∈Si

ui(si, s−i)

= {si ∈ Si : ui(si, s−i) ≥ ui(s
′

i, s−i), ∀ s′i ∈ Si}

Equivalent definition of Nash equilibrium (fixed point) :

s∗i ∈ BRi(s
∗

−i), for all i ∈ N

⇔ s∗ ∈ BR(s∗) (matrix form)

where BR : S ։ S is defined by BR(s) = BR1(s−1) × · · · × BRn(s−n)
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Illustration.

G C D

H 1 , 2∗ 2∗, 1 1∗, 0

M 2∗, 1∗ 0 , 1∗ 0 , 0

B 0 , 1 0 , 0 1∗, 2∗

∗ ↔ best response strategy

Two ∗ ↔ each player plays a best response to his opponent’s strategy

↔ Nash equilibrium (here, (M, G) and (B, D))
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Existence Theorem

If the game 〈N, (Si)i∈N , (ui)i∈N〉 satisfies the following conditions for all i ∈ N :

• the set of strategies Si is a non empty Euclidean subspace (Si ⊆ R
K , K

integer) compact and convex

• the payoff function ui : S → R is continuous

• ui(·, s−i) : Si → R is quasi-concave for all s−i ∈ S−i

then there exists at least one Nash equilibrium in pure strategies

Proof. Apply Kakutani’s (1941) fixed point theorem to the correspondence

BR : S ։ S �
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Cournot Duopoly, continuation

ui(s1, s2) = si(−θi − s1 − s2)

A Nash equilibrium exists because

• S1 = S2 = [0, 1] non-empty, compact and convex

• ui(si, s−i) continuous with respect to s

• ui(si, s−i) concave w.r.t. si (∂2ui

∂si
2 < 0) ⇒ quasi-concave

Firms’ best responses:
BR1(s2) =

{
−θ1 − s2

2

}

BR2(s1) =

{
−θ2 − s1

2

}

At equilibrium, we get s∗1 =
θ2 − 2θ1

3

s∗2 =
θ1 − 2θ2

3
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Graphical representation with θ2 = −1, θ1 = −(3/2), −1, and −(1/2)

BR1(s2, θ1) =

{
−θ1 − s2

2

}

BR2(s1) =

{
1 − s1

2

}

.

s2
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BR2(s1)

BR1(s2, θ1)

s∗(− 3

2
)
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2
)

t

t

t



Game Theory Normal Form Games (Part 1)

Symmetric Games



Game Theory Normal Form Games (Part 1)

Symmetric Games

Definition. A 2-player game is a symmetric game if S1 = S2 = A and

u1(a, b) = u2(b, a) for all a, b ∈ A



Game Theory Normal Form Games (Part 1)

Symmetric Games

Definition. A 2-player game is a symmetric game if S1 = S2 = A and

u1(a, b) = u2(b, a) for all a, b ∈ A

Example. The Cournot duopoly if firms have the same cost function. In this case

the equilibrium is symmetric: s∗1 = s∗2 = − θ
3



Game Theory Normal Form Games (Part 1)

Symmetric Games

Definition. A 2-player game is a symmetric game if S1 = S2 = A and

u1(a, b) = u2(b, a) for all a, b ∈ A

Example. The Cournot duopoly if firms have the same cost function. In this case

the equilibrium is symmetric: s∗1 = s∗2 = − θ
3

Proposition. If a symmetric game satisfies the previous existence conditions then

it possesses a symmetric Nash equilibrium



Game Theory Normal Form Games (Part 1)

Symmetric Games

Definition. A 2-player game is a symmetric game if S1 = S2 = A and

u1(a, b) = u2(b, a) for all a, b ∈ A

Example. The Cournot duopoly if firms have the same cost function. In this case

the equilibrium is symmetric: s∗1 = s∗2 = − θ
3

Proposition. If a symmetric game satisfies the previous existence conditions then

it possesses a symmetric Nash equilibrium

Proof. BR1(a) = BR2(a) = f(a) for all a ∈ A. Then, apply Kakutani’s fixed

point theorem to f : A ։ A. ⇒ there exists a∗ such that a∗ ∈ f(a∗). Hence,

(a∗, a∗) is a Nash equilibrium because a∗ ∈ BRi(a∗), i = 1, 2 �



Game Theory Normal Form Games (Part 1)

Symmetric Games

Definition. A 2-player game is a symmetric game if S1 = S2 = A and

u1(a, b) = u2(b, a) for all a, b ∈ A

Example. The Cournot duopoly if firms have the same cost function. In this case

the equilibrium is symmetric: s∗1 = s∗2 = − θ
3

Proposition. If a symmetric game satisfies the previous existence conditions then

it possesses a symmetric Nash equilibrium

Proof. BR1(a) = BR2(a) = f(a) for all a ∈ A. Then, apply Kakutani’s fixed

point theorem to f : A ։ A. ⇒ there exists a∗ such that a∗ ∈ f(a∗). Hence,

(a∗, a∗) is a Nash equilibrium because a∗ ∈ BRi(a∗), i = 1, 2 �

Remark. Some equilibria of a symmetric game may be asymmetric (see, e.g., the

chicken game)
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�
The existence theorem for a Nash equilibrium does not apply (ui is not

continuous)

However, there is a unique Nash equilibrium: p∗

1 = p∗

2 = c (perfectly competitive

price, zero profit)


