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Pure strategy (action): often insufficient to appropriately describe players’ behavior

How to formalize the idea that a player chooses more often Rock than Scissors?

➙ Best response of his opponent: play more often Paper

➙ The first player must choose more often Scissors, . . .

➥ Can behavior stabilize?

☞ We must define mixed strategies

➢ ruse

➢ secret

➢ bluffing

Ex : penalty kick, poker, rock-paper-scissors, tax inspections . . . image



Game Theory Normal Form Games (Part 2)

Definition. A mixed strategy for player i is a probability distribution over the set

Si of pure strategies of player i



Game Theory Normal Form Games (Part 2)

Definition. A mixed strategy for player i is a probability distribution over the set

Si of pure strategies of player i

Σi = ∆(Si) ≡ {p ∈ R
|Si| : pk ≥ 0,

∑

k

pk = 1}

is the set of mixed strategies for player i. Let σi = (σi(si))si∈Si
be an element of Σi



Game Theory Normal Form Games (Part 2)

Definition. A mixed strategy for player i is a probability distribution over the set

Si of pure strategies of player i

Σi = ∆(Si) ≡ {p ∈ R
|Si| : pk ≥ 0,

∑

k

pk = 1}

is the set of mixed strategies for player i. Let σi = (σi(si))si∈Si
be an element of Σi

A mixed strategy σi is totally mixed if σi(si) > 0 for every si ∈ Si



Game Theory Normal Form Games (Part 2)

Definition. A mixed strategy for player i is a probability distribution over the set

Si of pure strategies of player i

Σi = ∆(Si) ≡ {p ∈ R
|Si| : pk ≥ 0,

∑

k

pk = 1}

is the set of mixed strategies for player i. Let σi = (σi(si))si∈Si
be an element of Σi

A mixed strategy σi is totally mixed if σi(si) > 0 for every si ∈ Si

VNM preferences ⇒ σ = (σi)i∈N is evaluated by player i with the expected utility

function Ui : Σ → R

Ui(σ) =
∑

s∈S

σ(s) ui(s)

where σ(s) is the probability that the profile of actions s is played given σ



Game Theory Normal Form Games (Part 2)

Definition. A mixed strategy for player i is a probability distribution over the set

Si of pure strategies of player i

Σi = ∆(Si) ≡ {p ∈ R
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∑
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pk = 1}

is the set of mixed strategies for player i. Let σi = (σi(si))si∈Si
be an element of Σi

A mixed strategy σi is totally mixed if σi(si) > 0 for every si ∈ Si

VNM preferences ⇒ σ = (σi)i∈N is evaluated by player i with the expected utility

function Ui : Σ → R

Ui(σ) =
∑

s∈S

σ(s) ui(s)

where σ(s) is the probability that the profile of actions s is played given σ

Independent strategies ⇒ σ(s) =
∏

i∈N σi(si)
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Example. 2-player, 2-action games: S1 = S2 = {a, b}, p = σ1(a), q = σ2(a)

a b

a p q p (1 − q) p

b (1 − p) q (1 − p) (1 − q) 1 − p

q 1 − q

Ui(σ) = p q ui(a, a)+ p (1− q) ui(a, b)+ (1− p) q ui(b, a)+ (1− p) (1− q) ui(b, b)
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The normal form game 〈N, (Σi)i, (Ui)i〉 is called the mixed extension of the

normal form game 〈N, (Si)i, (ui)i〉

In the following, “ui = Ui”

➥ ui(si, σ−i) = expected utility of player i when he plays the pure strategy si

and the other players choose the mixed strategy profile σ−i

Definition. A mixed strategy Nash equilibrium of the normal form game

〈N, (Si)i, (ui)i〉

is a pure strategy equilibrium of its mixed extension

that is, a profile of strategies σ∗ ∈ Σ such that

ui(σ
∗
i , σ∗

−i) ≥ ui(σi, σ∗
−i), ∀ σi ∈ Σi, ∀ i ∈ N
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Illustration : Individual Decision

Choose between a = “jogging”, b = “homework”

c = “cinema”, d = “siesta”

σi = (pa, pb, pc, pd) : Strategy of the decisionmaker

⇒ Lottery

pc Cinema

pb Homework

pd

Siesta

pa

Jogging

The decisionmaker chooses σi = ( 5
6
, 1

6
, 0, 0)

⇒ supp[σi] = {a, b}
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For every (pa, pb, pc, pd),

5

6
ui(a) +

1

6
ui(b) ≥ pa ui(a) + pb ui(b) + pc ui(c) + pd ui(d)

⇔ ui(a) = ui(b) ≥







ui(c)

ui(d)

⇒ if the decision maker “throws a dice” to choose between a and b, then he should

prefer a and b to all other actions and should be indifferent between a and b
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ui(si, σ∗
−i) = ui(s

′
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−i), ∀ si, s′i ∈ supp[σ∗
i ]

and ui(si, σ∗
−i) ≥ ui(s

′′
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i ], s′′i ∈ Si

Proof. Directly from the multi-linearity of the expected utility function:

ui(σi, σ−i) =
∑

si∈Si

σi(si) ui(si, σ−i)

In particular, σi ∈ BRi(σ−i) if and only if si ∈ BRi(σ−i) for all si ∈ supp[σi].

That is, maxσi∈Σi
ui(σi, σ−i) = maxsi∈Si

ui(si, σ−i) �
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✍ Verify and explain why σ1 = (3/4, 0, 1/4) and σ2 = (0, 1/3, 2/3) is a Nash

equilibrium (a point · can be any payoff)

G (0) C (1/3) D (2/3)

H (3/4) (·, 2) (3, 3) (1, 1)

M (0) (·, ·) (0, ·) (2, ·)

B (1/4) (·, 4) (5, 1) (0, 7)
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Proposition. (Nash Theorem) Every finite normal form game has at least one

Nash equilibrium in mixed strategies

Proof. It is a corollary of the existence theorem of Nash equilibrium in pure

strategies since the mixed extension of a finite game satisfies the required

assumptions:

➢ for every i, the set of strategies Σi ⊆ R
|Si| is non-empty, compact and convex

(it is the simplex of dimension |Si|)

➢ the function ui : Σ → R is multi-linear, so ui(σ) is continuous in σ and

quasi-concave in σi. �

Proposition. Every symmetric and finite game has as symmetric mixed strategy

Nash equilibrium

Proof. Directly from the proposition on the existence of a symmetric pure

strategy equilibrium �
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Examples

Prisoners dilemma.

D C

D (1, 1) (3, 0)

C (0, 3) (2, 2)

(D, D) is the unique Nash equilibrium because D strictly dominates C for both

players
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Coordination game. a b

a (2, 2) (0, 0) p

b (0, 0) (1, 1) 1 − p

q 1 − q

p = σ1(a) : probability that player 1 chooses action a

q = σ2(a) : probability that player 2 chooses action a

If p ∈ {0, 1} we get the two pure strategy NE (a, a) and (b, b)

If 0 < p < 1 then player 1 should be indifferent

a
1

−→ u1(a, σ2) = 2q + 0(1 − q) = 2q

b
1

−→ u1(b, σ2) = 0q + 1(1 − q) = 1 − q

so a ∼1 b ⇔ 2q = 1 − q ⇔ q = 1
3

Player 2 plays σ2(a) = q = 1/3 if he is also indifferent. By symmetry, p = 1
3
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⇒ 3 NE, including 2 in pure strategies
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b (0, 0) (2, 3) 1 − p

q 1 − q

a
1

−→ 3q + (1 − q) = 1 + 2q

b
1

−→ 2(1 − q) = 2 − 2q

thus a ∼1 b ⇔ 1 + 2q = 2 − 2q ⇔ q = 1
4

a
2

−→ 2p

b
2

−→ p + 3(1 − p) = 3 − 2p
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Battle of sexes.
a b

a (3, 2) (1, 1) p

b (0, 0) (2, 3) 1 − p

q 1 − q

a
1

−→ 3q + (1 − q) = 1 + 2q

b
1

−→ 2(1 − q) = 2 − 2q

thus a ∼1 b ⇔ 1 + 2q = 2 − 2q ⇔ q = 1
4

a
2

−→ 2p

b
2

−→ p + 3(1 − p) = 3 − 2p

thus a ∼2 b ⇔ p = 3
4
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F P C

F (0, 0) (1,−1) (−1, 1) a

P (−1, 1) (0, 0) (1,−1) b

C (1,−1) (−1, 1) (0, 0) c

p q r
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Paper, Rock, Scissors.

F P C

F (0, 0) (1,−1) (−1, 1) a

P (−1, 1) (0, 0) (1,−1) b

C (1,−1) (−1, 1) (0, 0) c

p q r

a = b = c = 1/3 and p = q = r = 1/3
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Reporting a Crime

New York Times, March 1964 :

“37 Who Saw Murder Didn’t Call the Police”

We sometimes observe that when the number of witnesses increases, there is a

decline not only in the probability that any given individual intervenes, but also in

the probability that at least one of them intervenes!

Three main explanations are given:

➢ diffusion of responsibility

➢ audience inhibition

➢ social influence

☛ All these factors raise the expected cost and/or reduce the expected benefit of a

person’s intervening
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A game theoretical explanation.

• n players (witnesses)

• Two actions : call the Police (action P ) or do Nothing (action N)

• Preferences : value v if police is called, cost c if the individual calls the police

himself, where

v > c > 0

➥ n NE in pure strategies (exactly one person calls the police)

But coordination to such an asymmetric equilibrium is difficult without

communication or convention
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Symmetric equilibrium here: in (non-degenerated) mixed strategies

σi(P ) = q ∈ (0, 1) : probability that player i calls the police, i = 1, . . . , n

☞ Each player should be indifferent between P and N

P
i

−→ v − c

N
i

−→ 0 Pr(nobody calls) + v Pr(at least one calls)

so P ∼i N ⇔ v − c = v[1 − (1 − q)n−1]

⇒ q = 1 − (c/v)1/n−1

✔ Pr(one given person calls) = 1 − (c/v)1/n−1 decreases with n

✔ Pr(at least one person calls) = 1 − (1 − q)n = 1 − (c/v)n/n−1 decreases with

n !
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Reporting a crime when the witnesses are heterogeneous.

✍ Consider a variant of the model in which n1 witnesses incur the cost c1 to report

the crime, and n2 witnesses incur the cost c2, where 0 < c1 < v, 0 < c2 < v, and

n1 + n2 = n. Show that if c1 and c2 are sufficiently close, then the game has a

mixed strategy Nash equilibrium in which every witness’s strategy assigns positive

probabilities to both reporting (calling the police) and not reporting.
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Finding all Nash Equilibria

A B C

a 3, 2 1, 1 0, 1.5

b 0, 0 2, 3 1, 2

Figure 1: A variant of the battle of sexes

Two pure strategy Nash equilibria: (a, A) and (b, B)

How to find all (mixed strategy) equilibria?

☞ Consider every possible equilibrium support for player 1, and in each case

consider every possible support for player 2

We find (σ1, σ2) = ((4/5, 1/5), (1/4, 0, 3/4))
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Prudent / Maxmin Strategy

2-player finite games 〈{1, 2}, (S1, S2), (u1, u2)〉 image

Payoff guaranteed by strategy s1 ∈ S1 of player 1 = worst payoff that player 1 can

get by playing action s1 :

η1(s1) = min
σ2∈Σ2

u1(s1, σ2) = min
s2∈S2

u1(s1, s2)

Example : Chicken game

a b

a (2, 2) (1, 3)

b (3,1) (0,0)

η1(a) = η2(a) = 1

η1(b) = η2(b) = 0

A maxmin action is an action that maximizes the payoff that the player can

guarantee ⇒ “maxminimizing” action
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Definition. An action s∗1 ∈ S1 is a maxmin or maxminimizing action for player 1 if

s∗1 ∈ arg max
s1∈S1

η1(s1) = arg max
s1∈S1

min
s2∈S2

u1(s1, s2)

maxs1∈S1
mins2∈S2

u1(s1, s2) : maxminimized payoff in pure strategies for player 1,

i.e., the maximum payoff player 1 can guarantee in pure strategies

Example : in the chicken game

a b

a (2, 2) (1, 3)

b (3,1) (0,0)

• maxmin strategy of each player: a

• maxminimized payoff: 1

☞ A maxmin strategy profile is not necessarily a Nash equilibrium
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Definition. A mixed strategy σ∗
1 ∈ Σ1 is a maxmin (mixed) strategy for player 1 if

σ∗
1 ∈ arg max

σ1∈∆(S1)
η1(σ1) = arg max

σ1∈∆(S1)
min
s2∈S2

u1(σ1, s2)

maxσ1∈Σ1
mins2∈S2

u1(σ1, s2) : maxminimized payoff in mixed strategies for

player 1, i.e., the maximum payoff player 1 can guarantee in mixed strategies
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In the chicken game maxmin mixed strategy = maxmin pure strategy

a b

a (2, 2) (1, 3)

b (3, 1) (0, 0)

-

6

1

3

2

1

0

u1(σ1, σ2)

� η1(σ1) = min
s2∈S2

u1(σ1, s2) = u1(σ1, b)

�

max
σ1∈∆(S1)

min
s2∈S2

u1(σ1, s2)

= u1(a, b)

�
u1(σ1, a)

σ1(a)

u1(·)
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But a maxmin strategy is not necessarily a pure strategy. Battle of sexes

a b

a (3, 2) (1, 1)

b (0, 0) (2, 3)

-

6

1

3

2

1

0 σ1(a)

u1(·)

u1(σ1, σ2) �
η1(σ1)

R

max
σ1∈∆(S1)

min
s2∈S2

u1(σ1, s2) I

u1(σ1, a)

�

u1(σ1, b)

1
2

max
s1∈S1

min
s2∈S2

u1(s1, s2) = 1 < max
σ1∈Σ1

min
s2∈S2

u1(σ1, s2) = 1.5
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Zero-Sum Games

Definition. A 2-player game 〈{1, 2}, (S1, S2), (u1, u2)〉 is a zero-sum game or

strictly competitive game if players’ preference are diametrically opposed: u1 = u

and u2 = −u

Remark. In such games every outcome is clearly Pareto optimal

Examples : matching pennies, rock-paper-scissors, chess

✍ Find other examples of 0-sum games
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Theorem. In a finite zero-sum game, (σ∗
1 , σ∗

2) is a Nash equilibrium if and only if

(σ∗
1 , σ∗

2) is a maxmin strategy profile. In addition, we have

u1(σ
∗
1 , σ∗

2) = max
σ1∈Σ1

min
σ2∈Σ2

u1(σ1, σ2) = min
σ2∈Σ2

max
σ1∈Σ1

u1(σ1, σ2). (1)

Hence, every Nash equilibrium gives the same payoff to player 1 (his maxminimized

payoff, also called the value of the game), and to player 2

Remarks.

➢ Equality (1) ∼ Maxmin theorem (von Neumann, 1928)

➢ Equality (1) is not true in pure strategies. Ex : matching pennies

maxs1∈S1
mins2∈S2

u1(s1, s2) = −1 < mins2∈S2
maxs1∈S1

u1(s1, s2) = 1

➢ The equilibrium payoff can be guaranteed independently of the opponent’s

strategy ⇒ optimal strategy

➢ Equilibrium strategies are interchangeable
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Example. In matching pennies the maxmin strategy of player 1 is indeed

equivalent to his equilibrium strategy σ∗
1(G) = 1/2

-
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1

−1

1

0
σ1(G)

u1(·)

I

u1(σ1, D)
�

u1(σ1, G)

u1(σ1, σ2)

� η1(σ1) = min
s2∈S2

u1(σ1, s2)

?

max
σ1∈∆(S1)

min
s2∈S2

u1(σ1, s2)

1
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Proposition.

Let G be a finite zero-sum game and G′ the game obtained from G by deleting an

action of player i

Then the payoff of player i in G′ is not larger than his equilibrium payoff in G

This is not necessarily true in non zero-sum games, even if the equilibrium is unique

Proof. Directly from the fact that in zero-sum games

u1(σ∗
1 , σ∗

2) = maxσ1∈Σ1
minσ2∈Σ2

u1(σ1, σ2) from the theorem, and the fact that

Y ⊆ X implies maxx∈X f(x) ≥ maxx∈Y f(x)
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In non zero-sum games, consider
a b

a (10, 0) (1, 1)

b (5, 5) (0, 0)

The unique Nash equilibrium is (a, b). If we delete a for player 1 then the unique

equilibrium becomes (b, a)

✍ Explain why in a finite symmetric zero-sum game players’ payoff is zero in every

Nash equilibrium



Game Theory Normal Form Games (Part 2)

Iterated Elimination of Dominated Strategies



Game Theory Normal Form Games (Part 2)

Iterated Elimination of Dominated Strategies

• Nash Equilibrium



Game Theory Normal Form Games (Part 2)

Iterated Elimination of Dominated Strategies

• Nash Equilibrium: rational expectation, perfect coordination



Game Theory Normal Form Games (Part 2)

Iterated Elimination of Dominated Strategies

• Nash Equilibrium: rational expectation, perfect coordination

• Maxmin strategy



Game Theory Normal Form Games (Part 2)

Iterated Elimination of Dominated Strategies

• Nash Equilibrium: rational expectation, perfect coordination

• Maxmin strategy: pessimist, naive expectation (except in zero-sum games)



Game Theory Normal Form Games (Part 2)

Iterated Elimination of Dominated Strategies

• Nash Equilibrium: rational expectation, perfect coordination

• Maxmin strategy: pessimist, naive expectation (except in zero-sum games)

• Iterated elimination of dominated strategies



Game Theory Normal Form Games (Part 2)

Iterated Elimination of Dominated Strategies

• Nash Equilibrium: rational expectation, perfect coordination

• Maxmin strategy: pessimist, naive expectation (except in zero-sum games)

• Iterated elimination of dominated strategies: no ad hoc assumptions on

players’ expectations but



Game Theory Normal Form Games (Part 2)

Iterated Elimination of Dominated Strategies

• Nash Equilibrium: rational expectation, perfect coordination

• Maxmin strategy: pessimist, naive expectation (except in zero-sum games)

• Iterated elimination of dominated strategies: no ad hoc assumptions on

players’ expectations but

– each player is rational



Game Theory Normal Form Games (Part 2)

Iterated Elimination of Dominated Strategies

• Nash Equilibrium: rational expectation, perfect coordination

• Maxmin strategy: pessimist, naive expectation (except in zero-sum games)

• Iterated elimination of dominated strategies: no ad hoc assumptions on

players’ expectations but

– each player is rational

– each player thinks that others are rational



Game Theory Normal Form Games (Part 2)

Iterated Elimination of Dominated Strategies

• Nash Equilibrium: rational expectation, perfect coordination

• Maxmin strategy: pessimist, naive expectation (except in zero-sum games)

• Iterated elimination of dominated strategies: no ad hoc assumptions on

players’ expectations but

– each player is rational

– each player thinks that others are rational

– each player thinks that others think that others are rational . . .



Game Theory Normal Form Games (Part 2)

Iterated Elimination of Dominated Strategies

• Nash Equilibrium: rational expectation, perfect coordination

• Maxmin strategy: pessimist, naive expectation (except in zero-sum games)

• Iterated elimination of dominated strategies: no ad hoc assumptions on

players’ expectations but

– each player is rational

– each player thinks that others are rational

– each player thinks that others think that others are rational . . .

Common knowledge of rationality
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Definition. A pure strategy si ∈ Si is strictly dominated if there is a mixed

strategy σi ∈ Σi such that ui(σi, s−i) > ui(si, s−i) for all s−i ∈ S−i

A pure strategy si ∈ Si is weakly dominated if there is a mixed strategy σi ∈ Σi

such that ui(σi, s−i) ≥ ui(si, s−i) for all s−i ∈ S−i, with a strict inequality for at

least one s−i
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A strategy can be strictly dominated by a mixed strategy without being strictly

dominated by any pure strategy

Example.

G D

H (3, 0) (0, 1)

M (0, 0) (3, 1)

B (1, 1) (1, 0)

B is strictly dominated by (1/2)H + (1/2)M but not by H or M

Remark. If si is strictly (weakly) dominated then every mixed strategy putting

strictly positive probability on si is strictly (weakly) dominated
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A player does not play a strictly dominated strategy if and only if he maximizes

his expected payoff given some beliefs about others’ (possibly correlated)

strategies

Proposition. A strategy si of player i is strictly dominated if and only if si is never

a best response, i.e., si /∈ BRi(µ−i) for any belief µ−i ∈ ∆(S−i) of player i about

others’ behavior

Example.

G D

H (2, 1) (1, 2)

M (1, 0) (2, 5)

B (0, 2) (5, 1)

q 1 − q
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B (0, 2) (5, 1)

q 1 − q
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G D

H (2, 1) (1, 2)

M (1, 0) (2, 5)

B (0, 2) (5, 1)

q 1 − q

-

6

0 σ2(G) = q

u1(·)

1

5

4

3

2

1

H

B

2
3

M

	

BR1(σ2)

M is never a best response, so it is strictly dominated (✍ by which strategy?)
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Definition. A set of strategy profiles S∗ ⊆ S survives iterated elimination of

strictly dominated strategies if there is a sequence (Sk)K
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➠
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H (3, 0) (0, 1)
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➠
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M (3, 1)
➠ D

M (3, 1)
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Proposition. The set S∗ that survives iterated elimination of strictly dominated

strategies is uniquely defined

⇒ the ordering of elimination does not influence the final outcome
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The previous result is not true for iterated elimination of weakly dominated

strategies

Example.

G D

H (1, 1) (0, 0)

M (1, 1) (2, 1)

B (0, 0) (2, 1)

Proposition. Any action played with positive probability at a Nash equilibrium

survives iterated elimination of strictly dominated strategies. This is not necessarily

true for iterative elimination of weakly dominated strategies. However, after

iteratively eliminating weakly dominated strategies, there is always at least one

Nash equilibrium of the original game that survived
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Example. Cournot duopoly with θ1 = θ2 = −1 :
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Example. Cournot duopoly with θ1 = θ2 = −1 :

ui(s1, s2) = si(1 − s1 − s2) BRi(sj) =

{

1 − sj

2

}

Only the NE survives iterated elimination of strictly dominated strategies

S1
i = BRi([0, 1]) = [BRi(1), BRi(0)] = [0, 1/2],

S2
i = BRi([0, 1/2]) = [BRi(1/2), BRi(0)] = [1/4, 1/2]

S3
i = BRi([1/4, 1/2]) = [BRi(1/2), BRi(1/4)] = [1/4, 3/8]

...

Sn
i = BRi(S

n−1
i ) converges to the fixed point of BRi, which is the Nash

equilibrium s∗i = 1/3
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