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Incomplete Information and Bayesian Games

Outline
(October 27, 2008)

• Information structure, knowledge and common knowledge, beliefs

• Bayesian game and equilibrium

• Applications

– No bet/trade theorems

– Reinterpretation of mixed strategies

– Correlation and communication
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Implicit assumption in games (normal and extensive forms):

Every player perfectly knows the game

However, in many economic situations, information is imperfect and asymmetric:

☞ Policymakers: state of the economy, consumers and firms’ preferences

☞ Firms: costs, level of demand, other firms’ R&D output

☞ Negotiators: others’ valuations and costs, . . .

☞ Bidders: value of the object, other bidders’ valuations

☞ Shareholders: value of the firm

☞ Contractual relationships: The principal (insurer, employer, regulator, . . . ) does

not know the “type” of the agent(s)
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Information System

➢ Set of states of the world: Ω

ω ∈ Ω: complete description of the situation (players’ preferences and

information)

➢ Information function of player i:

Pi : Ω → 2Ω

Assumptions:

ω ∈ Pi(ω) for every ω ∈ Ω: correct (“truth axiom”)

ω′ ∈ Pi(ω) ⇒ Pi(ω′) = Pi(ω): partitional

➥ Partition Pi = {Pi(ω) : ω ∈ Ω} of player i

Information set of player i at ω: Pi(ω) = element of Pi containing ω
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Every player knows others’ partitions (otherwise ω is not a complete description of

the situation)

Examples

Ω = {00, 01, 02, . . . , 97, 98, 99} and the agent can only read the first digit:

Pi(00) = . . . = Pi(09) = {00, 01, . . . , 09}
...

...
...

Pi(k0) = . . . = Pi(k9) = {k0, k1, . . . , k9}
...

...
...

Pi(90) = . . . = Pi(99) = {90, 91, . . . , 99}

⇒
Partition Pi = {{00, . . . , 09}, . . . , {90, . . . , 99}}

Correct (ω ∈ Pi(ω) for every ω ∈ Ω)
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Ω = {00, 01, 02, . . . , 97, 98, 99} and the agent can read both digits

but he reads it in the wrong way round:

Pi(kl) = {lk}

⇒ partition but ω /∈ Pi(ω) (errors)

Ω = {B, M} and the agent only remembers good news:

Pi(B) = {B} Pi(M) = {B, M}

⇒ ω ∈ Pi(ω) for every ω: correct information but not partitional:

B ∈ Pi(M) but Pi(B) 6= Pi(M) (imperfect introspection)
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Player i is more informed than player j if partition Pi is finer than Pj, i.e.
Pi(ω) ⊆ Pj(ω) ∀ ω ∈ Ω

Examples

Coin flip, only player 1 observes the outcome:

Ω = {H, T} P1 = {{H}, {T}} P2 = {{H, T}}

☞ Player 1 if more informed than player 2

Player 1 does not know whether player 2 has cheated:

Ω = {H, HC , T, T C} P1 = {{H, HC}, {T, T C}} P2 = {{H, T}, {HC}, {T C}}

☞ No player is more informed than the other
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Individual Knowledge

Knowledge operator : Ki : 2Ω → 2Ω

KiE = {ω ∈ Ω : Pi(ω) ⊆ E}

= set of states in which player i knows that the event E is realized

WiE = KiE ∪ Ki¬E

= set of states in which player i knows whether the event E is realized
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Properties of the knowledge operator Ki.

KiΩ = Ω (necessitation): an agent always knows that the universal event Ω is

realized. No unforeseen contingencies

Ki(E ∩ F ) = KiE ∩ KiF (axiom of deductive closure): an agent knows E and F

iff he knows E and he knows F (⇒ logical omniscience: E ⊆ F ⇒ KiE ⊆ KiF )

KiE ⊆ E (truth axiom): what the agent knows is true. Allow to distinguish the

concept of knowledge from the concept of belief

KiE ⊆ K2
i E (positive introspection axiom): if an agent knows E, then he knows

that he knows E

¬KiE ⊆ Ki¬KiE (negative introspection axiom): if an agent does not know E,

then he knows that he does not know E (most restrictive axiom)
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Example. Ω = {1, 2, 3, 4} P1 = {{1}, {2}, {3, 4}} P2 = {{1, 2}, {3, 4}}

E = {3} ⇒ K1E = K2E = ∅: nobody knows E
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Example. Ω = {1, 2, 3, 4} P1 = {{1}, {2}, {3, 4}} P2 = {{1, 2}, {3, 4}}

E = {3} ⇒ K1E = K2E = ∅: nobody knows E

E = {1, 3} ⇒ K1E = {1}, K2E = ∅, K1¬E = {2}

⇒ W1E = {1, 2}, K2W1E = {1, 2}, K2¬W1E = {3, 4}, W2W1E = Ω

⇒ E is private knowledge for player 1 at ω = 1

and player 2 always knows whether player 1 knows E

If P2 = {{1, 2, 3, 4}} then K2W1E = ∅, K2¬W1E = ∅, W2W1E = ∅

i.e., E is private and secret knowledge for player 1 at ω = 1

(player 2 never knows whether player 1 knows E)
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Interactive Knowledge

Mutual/shared Knowledge:

KE =
⋂

i∈N KiE

= set of states in which all players know E

Mutual knowledge at order k:

KkE = K · · ·K︸ ︷︷ ︸
k times

E

= set of states in which everybody knows that everybody knows

. . . [k times] that E is realized
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Common Knowledge (Lewis, 1969; Aumann, 1976):

CKE = K∞E

= set of states in which everybody knows that everybody knows

. . . [at infinity] that E is realized

= {ω ∈ Ω : M(ω) ⊆ E}

where M(ω) is the cell of the common knowledge partition (“Meet”),

M =
∧

i∈N Pi, the finest common coarsening of individuals’ partitions Pi, i ∈ N

Distributed Knowledge:

DE = {ω ∈ Ω :
⋂

i∈N Pi(ω) ⊆ E}

= set of states in which everybody knows E

if they completely share their private information
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Example

Ω = {1, 2, 3, 4, 5} P1 = {{1}, {2, 3}, {4, 5}} P2 = {{1}, {2}, {3, 4}, {5}}

E = {3, 4, 5}

K1E = {4, 5}, K2E = {3, 4, 5} ⇒ KE = {4, 5}:

E is mutually known in ω = 4 and 5

K1KE = {4, 5}, K2KE = {5} ⇒ KKE = {5}:

E is mutually known at order 2 in ω = 5

K1KKE = ∅, K2KKE = {5} ⇒ KKKE = ∅:

E is never mutually known at order 3

⇒ E is never commonly known

On the contrary, F = {2, 3, 4, 5} is commonly known whenever F is realized

M = {{1}, {2, 3, 4, 5}}
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Beliefs and Consensus

Common prior probability distribution: p ∈ ∆(Ω)

Posterior belief of player i about E ⊆ Ω at ω ∈ Ω:

p(E | Pi(ω)) =
p(E ∩ Pi(ω))

p(Pi(ω))

➥ Differences in beliefs between individuals only come from asymmetric

information

In particular, individuals cannot agree to disagree: if their beliefs about an event E

are commonly known, then these beliefs about E should be the same
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that agent i’s posterior belief about E is equal to qi, for every i ∈ N , then these
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Theorem. (We can’t agree to disagree. Aumann, 1976) Let N be a set of

agents with the same prior beliefs on Ω with partitional (and correct) information

about Ω. Let E ⊆ Ω be an event. If it is commonly known in some state ω ∈ Ω

that agent i’s posterior belief about E is equal to qi, for every i ∈ N , then these

posterior beliefs are equal: qi = qj , for every i, j ∈ N

Proof. Consider an agent i ∈ N and the event “i’s posterior belief about E is

equal to qi”:

Fi = {ω ∈ Ω : Pr[E | Pi(ω)] = qi}

Fi is commonly known at ω iff M(ω) ⊆ Fi, i.e., Pr[E | Pi(ω′)] = qi for every

ω′ ∈ M(ω). Hence:

Pr[E | M(ω)] = qi

because M(ω) is the union of disjoint cells Pi(ω′) of Pi �
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Figure 1: Robert Aumann (1930– ), Nobel price in economics in 2005
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✍ Show with a simple example that it can be commonly known between two

individuals that they do not have the same posterior beliefs about some event E

✍ Show as in the proof before that it cannot be commonly known between two

individuals that the posterior belief of the first individual about an event E is

strictly larger than the posterior belief of the second individual
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✍ Show that the result is not valid if we replace “commonly known” by “mutually

known” (take Ω = 1234, p uniform, P1 = {12, 34}, P2 = {123, 4}, E = 14 and

ω = 1)

The result can easily be generalized from posterior beliefs to any rule (function)

f : 2Ω → D which is union-consistent, i.e., such that for every disjoint events E ⊆ Ω

and F ⊆ Ω (i.e., E ∩ F = ∅), if f(E) = f(F ), then f(E ∪ F ) = f(E) = f(F )

Examples: posterior beliefs, conditional expectation, decision maximizing an

expected utility, . . .

If agents (publicly) communicate the values of such a function at their information

sets, these values will become commonly known, and thus equal (consensus)

➥ “We can’t disagree forever” (Geanakoplos and Polemarchakis, 1982; Cave,

1983)
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✍ Show that the consensus is not necessarily the same if agents directly

communicate their information (take Ω = 1234, p uniform, P1 = {12, 34},

P2 = {13, 24}, E = 14, f(·) = Pr(E | ·), and ω = 1)

➥ If two detectives with the same preferences share the name of the suspect they

would like to arrest, then after some time they will agree (reach a consensus), but

not necessarily on the same suspect they would have arrested if they had shared all

their clues (information)
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Bayesian Game

G = 〈N, Ω, p, (Pi)i, (Ai)i, (ui)i〉

• N = {1, . . . , n}: set of players

• Ω: set of states of the world

• p ∈ ∆(Ω): strictly positive common prior probability distribution

• Pi: information partition of player i (i = 1, . . . , n)

• Ai: nonempty set of actions of player i (i = 1, . . . , n)

• ui : A1 × · · · × An × Ω → R: utility function of player i (i = 1, . . . , n)
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Alternative equivalent representation (Harsanyi, 1967–1968):

Ω ➠ T = T1 × · · · × Tn: type space

p ∈ ∆(Ω) ➠ p ∈ ∆(T )

Pi ➠ Ti: type space of player i

ui(a; ω) ➠ ui(a; (t1, . . . , tn))
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Particular Cases

Decision Problem

〈Ω, p,P, A, u〉

Strategy (decision rule) s : Ω → A, measurable w.r.t. to P

Proposition. In this model, a decision rule s is ex-ante optimal, i.e., s is a solution

of

max
s

∑

ω∈Ω

p(ω) u(s(ω); ω)

iff s is interim optimal, i.e., for every ω ∈ Ω, s(ω) is a solution of

max
s(ω)

∑

ω′∈Ω

p(ω′ | P (ω)) u(s(ω); ω′)
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Proposition. In an individual decision problem, the value of information is always

positive

Proof. If P is finer than P ′ then the set of strategies of the agent with P

contains his set of strategies with P ′: S′ ⊆ S. Hence:

max
s∈S

E[u(s(ω); ω)] ≥ max
s∈S′

E[u(s(ω); ω)]

➥ more information ∼ more strategies

More generally, using the max min property of Nash equilibria in zero-sum games, it

can be shown that the value of information is always positive in these games
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Bounded Rationality: we relax, for example, the negative introspection axiom

➥ The two previous propositions do not apply anymore

Example. Ω = {1, 2, 3}, P (1) = {1, 2}, P (2) = {2}, P (3) = {2, 3} ⇒ negative

introspection not verified anymore because K¬K{2} = K¬{2} = K{1, 3} = ∅

In the following decision problem

Bet Don’t bet Pr

ω1 −2 0 1/3

ω2 3 0 1/3

ω3 −2 0 1/3

the interim optimal decision is BBB while the ex-ante optimal decision is DBD

In addition, the value of information is negative with the interim optimal decision

rule (the payoff without information would be zero)
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Perfect Information

Pi(ω) = {ω}, ∀ ω ∈ Ω

Symmetric Information

Pi = Pj , ∀ i, j ∈ N

Independent Types

p

[
⋂

i∈N

Pi(ω)

]
=

∏

i∈N

p [Pi(ω)]

➠ p((ti)i∈N ) = p(t1) × · · · × p(tn)
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(Bayesian) Nash Equilibrium

• Pure strategy of player i:

si : Ω → Ai, measurable wrt Pi

• Mixed strategy of player i:

σi : Ω → ∆(Ai), measurable wrt Pi

➢ Pooling strategy:

σi(ω) = σi(ω
′) ∀ ω, ω′ ∈ Ω

➢ Separating strategy:

si(ω) 6= si(ω
′) ∀ ω, ω′ s.t. Pi(ω) 6= Pi(ω

′)

Set of pure (mixed) strategies of player i in G: Si (Σi)
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Definition. A (Bayes) Nash Equilibrium of the Bayesian game G is a Nash

equilibrium of the normal form game

G̃ = 〈N, (Σi)i, (ũi)i〉

where ũi(σ) ≡ E[ui(σ(·); ·)] =
∑

ω∈Ω p(ω)ui(σ(ω); ω)

i.e., a strategy profile σ∗ = (σ∗

i )i∈N s.t.

E[ui(σ
∗

i (·), σ
∗

−i(·); ·)] ≥ E[ui(σi(·), σ
∗

−i(·); ·)]

∀ σi ∈ Σi, ∀ i ∈ N

⇔
∑

ω′∈Ω

p(ω′ | Pi(ω))ui(σ
∗

i (ω), σ∗

−i(ω
′); ω′) ≥

∑

ω′∈Ω

p(ω′ | Pi(ω))ui(ai, σ
∗

−i(ω
′); ω′)

∀ ai ∈ Ai, ∀ ω ∈ Ω, ∀ i ∈ N
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In a game, the value of information may be negative.

Ω = {ω1, ω2}, p(ω1) = p(ω2) = 1/2

ω1 a b

a (0, 0) (6,−3)

b (−3, 6) (5, 5)

ω2 a b

a (−20,−20) (−7,−16)

b (−16,−7) (−5,−5)

➊ The two players are uninformed: P1 = P2 = {{ω1, ω2}}

➥ G̃ = 1
2
G1 + 1

2
G2 =

a b

a (−10,−10) (−0.5,−9.5)

b (−9.5,−0.5) (0, 0)
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In a game, the value of information may be negative.

Ω = {ω1, ω2}, p(ω1) = p(ω2) = 1/2

ω1 a b

a (0, 0) (6,−3)

b (−3, 6) (5, 5)

ω2 a b

a (−20,−20) (−7,−16)

b (−16,−7) (−5,−5)

➊ The two players are uninformed: P1 = P2 = {{ω1, ω2}}

⇒ Unique NE: (b, b) ⇒ (0, 0)

➋ The two players are informed: P1 = P2 = {{ω1}, {ω2}}

⇒ Unique NE: ((a, a) | ω1) , ((b, b) | ω2) ⇒ (−2.5, −2.5)

➌ Only player 1 is informed: P1 = {{ω1}, {ω2}}, P2 = {{ω1, ω2}}

⇒ Unique NE: ((a, a) | ω1) , ((b, a) | ω2) ⇒ (−8, −3.5)
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Not Trade / No Bet Theorem

Example. 2 players can bet on the realization of a state in Ω = {ω1, ω2, ω3}, with a

uniform prior probability distribution

Payoffs:





ω1 −→ (2,−2)

ω2 −→ (−3, 3)

ω3 −→ (5,−5)

Information:





P1 = {{ω1}, {ω2, ω3}}

P2 = {{ω1, ω2}, {ω3}}

−2 +3 −5

+2 −3 +5

NO

NONO

NONO

NO

⇒ Unique NE: no bet
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General Case

A zero-sum bet x : Ω → R is proposed to the players

They decide simultaneously to bet (action B) or not to bet (action D)

Payoffs: (0, 0)

Payoffs at ω if both players bet: (x(ω), −x(ω))

No Bet Theorem. Whatever the (correct and partitional) information structure, no

player, whatever his information set, can expect strictly positive payoffs at a Nash

equilibrium

⇒ Pure speculation cannot be explained by asymmetric information only
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Important assumptions:

• Every player is rational at every state of the world

(⇒ common knowledge of rationality)

Previous example: if player 2 is not rational at ω3 then all players may bet in

every state

⇒ at ω1 everybody bets and everybody knows that everybody is rational

(but rationality is not commonly known)

• Common prior probability distribution

(differences in beliefs only come from asymmetric information)
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• Partitional information structure

For example, in the following situation

Bet Don’t Bet Pr

ω1 −2 0 1/3

ω2 3 0 1/3

ω3 −2 0 1/3

with P1(1) = {1, 2}, P1(2) = {2}, P1(3) = {2, 3} and P2 = {Ω}, players bet in

every state
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Reinterpretation of Mixed Strategies

Harsanyi (1973): the mixed strategy of player i represents others’ uncertainty about

the action chosen by player i. This uncertainty is due to the fact that player i has a

small private information about his preference

Example. a b

a 3 + t1, 3 + t2 3 + t1, 0

b 0, 3 + t2 4, 4

☞ NE if t1 = t2 = 0: (a, a), (b, b) and σ1(a) = σ2(a) = 1/4

☞ Incomplete information: t1, t2 i.i.d. U [0, T ]

Consider the following (symmetric) pure strategies:

Play a if ti > t∗

Play b if ti ≤ t∗
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a b

a 3 + t1, 3 + t2 3 + t1, 0

b 0, 3 + t2 4, 4
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Belief of each player about the other player’s action:

µ(a) =
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T
µ(b) =
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⇒ Expected payoff of player i as a function of his action:

a
i

−→ 3 + ti b
i

−→ 4 t∗/T

so a ≻i b ⇔ 3 + ti > 4 t∗

T
⇔ ti > 4 t∗−3T

T

The original strategy is a NE of the Bayesian game if 4 t∗−3T
T

= t∗, i.e., t∗ = 3T
4−T

, so

µ(a) =
T − t∗

T
= 1 −

3

4 − T
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−→ 3 + ti b
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−→ 4 t∗/T

so a ≻i b ⇔ 3 + ti > 4 t∗

T
⇔ ti > 4 t∗−3T

T

The original strategy is a NE of the Bayesian game if 4 t∗−3T
T

= t∗, i.e., t∗ = 3T
4−T

, so

µ(a) =
T − t∗

T
= 1 −

3

4 − T

(T→0)
−→ 1/4 = σi(a)



Game Theory Incomplete Information and Bayesian Games



Game Theory Incomplete Information and Bayesian Games
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mixed strategies) of a normal form game can “almost always” be obtained as the

limit of a pure strategy NE of such a perturbed game with incomplete information

when the prior uncertainty (T ) tends to 0
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Harsanyi (1973) shows, more generally, that every Nash equilibrium (especially in

mixed strategies) of a normal form game can “almost always” be obtained as the

limit of a pure strategy NE of such a perturbed game with incomplete information

when the prior uncertainty (T ) tends to 0

➥ Stability of mixed strategies
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Possible interpretation of mixed strategy equilibria: players’ actions depend on

independent private signals (mood, position of the second hand of their watch, . . . )

that do not affect players’ payoffs

Example: Battle of sexes.

a b

a (3, 2) (1, 1)

b (0, 0) (2, 3)

The mixed strategy NE, ((3/4, 1/4), (1/4, 3/4)), generates the same outcome (so,

the same payoffs (3/2, 3/2)) as a pure strategy NE of the Bayesian game in which

each player has two possible types, ta
i , tb

i , that are independent and payoff irrelevant,

where Pr(ta
1) = Pr(tb

2) = 3/4, Pr(tb
1) = Pr(ta

2) = 1/4, σi(ta
i ) = a, and σi(tb
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Correlation and communication

Possible interpretation of mixed strategy equilibria: players’ actions depend on

independent private signals (mood, position of the second hand of their watch, . . . )

that do not affect players’ payoffs

Example: Battle of sexes.

a b

a (3, 2) (1, 1)

b (0, 0) (2, 3)

The mixed strategy NE, ((3/4, 1/4), (1/4, 3/4)), generates the same outcome (so,

the same payoffs (3/2, 3/2)) as a pure strategy NE of the Bayesian game in which

each player has two possible types, ta
i , tb

i , that are independent and payoff irrelevant,

where Pr(ta
1) = Pr(tb

2) = 3/4, Pr(tb
1) = Pr(ta

2) = 1/4, σi(ta
i ) = a, and σi(tb

i) = b

✍ Write the previous information structure with information partitions
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What happens if players can observe correlated signals, or simply common (public)

signals?

Example: public observation of a coin flip (P1 = P2 = {H, T})

➡ New equilibrium in the battle of sexes game, e.g., (a, a) if H and (b, b) if T

☞ Public Correlated Equilibrium

The induced distribution of actions µ =


1/2 0

0 1/2


, and the payoffs (5/2, 5/2)

cannot be obtained as a Nash equilibrium of the original game
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We can also have an intermediate situation between independent signals (NE in

mixed strategies) and public signals (public correlated equilibrium = convex

combination of NE)

For example, Ω = {ω1, ω2, ω3}, p(ω) = 1/3, and

P1 = {{ω1, ω2}︸ ︷︷ ︸
a

, {ω3}︸ ︷︷ ︸
b

}

P2 = {{ω1}︸ ︷︷ ︸
a

, {ω2, ω3}︸ ︷︷ ︸
b

}

generates the distribution µ =


1/3 1/3

0 1/3


, and the payoffs (2, 2)
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Definition. (Aumann, 1974) A correlated equilibrium (CE) of the normal form

game

〈N, (Ai)i∈N , (ui)i∈N 〉

is a pure strategy NE of the Bayesian game

〈N, Ω, p, (Pi)i, (Ai)i, (ui)i〉

where players’ payoffs do not depend on the state of the world (ui(a; ω) = ui(a)),

i.e., a profile of pure strategies s = (s1, . . . , sn) such that, for every player i ∈ N

and strategy ri of player i:
∑

ω∈Ω

p(ω) ui(si(ω), s−i(ω)) ≥
∑

ω∈Ω

p(ω) ui(ri(ω), s−i(ω))
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Definition. (Aumann, 1974) A correlated equilibrium (CE) of the normal form

game

〈N, (Ai)i∈N , (ui)i∈N 〉

is a pure strategy NE of the Bayesian game

〈N, Ω, p, (Pi)i, (Ai)i, (ui)i〉

where players’ payoffs do not depend on the state of the world (ui(a; ω) = ui(a)),

i.e., a profile of pure strategies s = (s1, . . . , sn) such that, for every player i ∈ N

and strategy ri of player i:
∑

ω∈Ω

p(ω) ui(si(ω), s−i(ω)) ≥
∑

ω∈Ω

p(ω) ui(ri(ω), s−i(ω))

➥ Correlated equilibrium outcome or distribution µ ∈ ∆(A), where

µ(a) = p({ω ∈ Ω : s(ω) = a})

➥ Correlated equilibrium payoff
∑

a∈A µ(a)ui(a), i = 1, . . . , n
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In the battle of sexes game, every correlated equilibrium payoff we have seen

belongs to the convex hull of the set of NE payoffs:

co{EN}

feasible payoffs

0 1 2 3
0

1

2

3

b

b

b

b

b

b

b

b
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☞ But the set of CE payoffs does not always belong to the convex hull of the

set of NE payoffs

P1 = {{ω1, ω2}︸ ︷︷ ︸
a

, {ω3}︸ ︷︷ ︸
b

}

P2 = {{ω1}︸ ︷︷ ︸
a

, {ω2, ω3}︸ ︷︷ ︸
b

}

a b

a (2, 7) (6, 6)

b (0, 0) (7, 2)

Chicken Game

➡ Correlated equilibrium payoffs (5, 5) /∈ co{EN}
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b

b

b

b

b

b
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A CE may even Pareto dominate all NE

For example, in the game

0,0 1,2 2,1

2,1 0,0 1,2

1,2 2,1 0,0

the unique NE distribution is




1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9


, with the expected payoff 1+2

3
= 1

for each player, while the CE distribution




0 1/6 1/6

1/6 0 1/6

1/6 1/6 0


 gives the expected

payoff 3/2 for each player
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Proposition.

① In the definition of a CE we can allow for mixed strategies in the Bayesian

game, this does not enlarge the set of CE outcomes. In particular, a mixed

strategy NE outcome is a CE outcome

② Every convex combination of CE outcomes is a CE outcome

Proof. It suffices to construct the appropriate information system (see also

Osborne and Rubinstein, 1994, propositions 45.3 and 46.2) �
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game, this does not enlarge the set of CE outcomes. In particular, a mixed
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② Every convex combination of CE outcomes is a CE outcome

Proof. It suffices to construct the appropriate information system (see also

Osborne and Rubinstein, 1994, propositions 45.3 and 46.2) �

Information systems used in the previous examples:

➢ Set of states Ω ⊆ set of action profiles A

➢ Each player is only informed about his action

➥ Canonical Information System
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Proposition. Every correlated equilibrium outcome of a normal form game

〈N, (Ai)i∈N , (ui)i∈N〉 is a canonical correlated equilibrium outcome, where the

information structure and strategies are given by:

• Ω = A

• Pi = {{a ∈ A : ai = bi} : bi ∈ Ai} for every i ∈ N

• si(a) = ai for every a ∈ A and i ∈ N
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Proposition. Every correlated equilibrium outcome of a normal form game

〈N, (Ai)i∈N , (ui)i∈N〉 is a canonical correlated equilibrium outcome, where the

information structure and strategies are given by:

• Ω = A

• Pi = {{a ∈ A : ai = bi} : bi ∈ Ai} for every i ∈ N

• si(a) = ai for every a ∈ A and i ∈ N

➥ “Revelation principle” for complete information games:

Other possible interpretation: Every correlated equilibrium outcome can be achieved

with a mediator who makes private recommendations to the players, and no player

has an incentive to deviate from the mediator’s recommendation
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µ1 µ2

µ3 µ4


 of the game

a b

a (2, 7) (6, 6)
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Set of correlated equilibrium outcomes µ =


µ1 µ2

µ3 µ4


 of the game

a b

a (2, 7) (6, 6)

b (0, 0) (7, 2)

Incentive constraints:

Player 1





2µ1 + 6µ2 ≥ 7µ2

7µ4 ≥ 2µ3 + 6µ4

Player 2





7µ1 ≥ 6µ1 + 2µ3

6µ2 + 2µ4 ≥ 7µ2

⇐⇒





µ2 ≤ 2µ1

µ2 ≤ 2µ4

and





2µ3 ≤ µ4

2µ3 ≤ µ1
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