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• Study long term interactions by considering a basic (simultaneous) stage game

G repeated among the same set of players

➥ incentives that differ fundamentally from those of isolated interactions

Example 1

A B C

A (5, 5) (0, 0) (12, 0)

B (0, 0) (2, 2) (0, 0)

C (0, 12) (0, 0) (10, 10)

Two strict Nash equilibria: AA and BB, with maximum payoff 5

If the game is played twice, CC in the first stage and AA in the second stage is a

(subgame perfect) Nash equilibrium outcome, with a higher average payoff (7.5)

☞ Menaces, deterrence, punishments, promises

☞ Possibility to sustain cooperation and to improve efficiency
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• Two classes of repeated games: finite horizon / infinite horizon image

• Assumption here: “supergame”

– Complete information – Perfect monitoring

⇒ Game with almost perfect information

• A discount factor may be introduced
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A player may value future payoffs less than current ones because he is impatient

Discount factor δ ∈ [0, 1]: the player is indifferent between getting x tomorrow and

δ x today ➠ more patient ⇔ δ higher

Example: ∀ δ < 1, (1,−1, 0, 0, . . .) ≻ (0, 0, 0, 0, . . .)

• Discounted sum (present value) of a sequence of payoffs x(t), t = 1, 2, . . . , T :

T∑

t=1

δt−1 x(t) =







∑T
t=1 x(t) if δ = 1

x(1) if δ = 0

• Average discounted payoff:

∑T
t=1 δt−1 x(t)
∑T

t=1 δt−1
=







∑T
t=1

x(t)

T
if δ = 1

x(1) if δ = 0
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= x if x(t) = x for every t
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• Infinite case (δ < 1) :

lim
T→∞

∑T
t=1 δt−1 x(t)
∑T

t=1 δt−1
= (1 − δ)

∞∑

t=1

δt−1 x(t)

= x if x(t) = x for every t

Remark: (1− δ) is a normalization factor to readily compare payoffs in the repeated

game and the stage game

• Other interpretations:

– In each stage, the game stops with probability (1 − δ)

– Players can borrow and lend at the interest rate r

⇒ δ = 1
1+r

(1 + r e tomorrow ∼ δ(1 + r) = 1 e today)
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• The minmax, individually rational or punishment payoff of player i in the normal

form game G is the lowest payoff that the other players can force upon player i:

vi = min
σ−i∈

∏

j 6=i
∆(Aj)

max
ai∈Ai

ui(ai, σ−i)

In other words, vi is the worst payoff of player i consistent with individual

optimization
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Definitions

• The minmax, individually rational or punishment payoff of player i in the normal

form game G is the lowest payoff that the other players can force upon player i:

vi = min
σ−i∈

∏

j 6=i
∆(Aj)

max
ai∈Ai

ui(ai, σ−i)

In other words, vi is the worst payoff of player i consistent with individual

optimization

• minmax strategy profile against i: a solution of the minimization problem above

Remark In general, minmax 6= maxmin in a game with more than two players. In

2-player games vi is also the maximum payoff player 1 can guarantee

(maxminimized payoff in mixed strategies)
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• A payoff profile w = (w1, . . . , wn) is (strictly) individually rational if each

player’s payoff is larger than his minmax payoff: for every i ∈ N ,

wi ≥ (>) min
σ−i∈

∏

j 6=i
∆(Aj)

max
ai∈Ai

ui(ai, σ−i) ≡ vi
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• A payoff profile w = (w1, . . . , wn) is (strictly) individually rational if each

player’s payoff is larger than his minmax payoff: for every i ∈ N ,

wi ≥ (>) min
σ−i∈

∏

j 6=i
∆(Aj)

max
ai∈Ai

ui(ai, σ−i) ≡ vi

Explanation. wi is individually rational for player i if there exists a profile of

strategies of the other players, τ−i (the minmax strategy profile against i), which

ensures that whatever player i is doing his payoff is smaller than wi:

wi ≥ min
σ−i∈

∏

j 6=i
∆(Aj)

max
ai∈Ai

ui(ai, σ−i) ≡ vi

⇔ wi ≥ max
ai∈Ai

ui(ai, τ−i) ⇔ wi ≥ ui(ai, τ−i), ∀ ai ∈ Ai
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during T stages, past actions are publicly observed (perfect monitoring), and

players’ payoff is the δ-discounted sum (or average) payoff
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Finitely Repeated Games

Definition Given a normal form game G = 〈N, (Ai), (ui)〉, the finitely repeated

game G(T, δ) is the extensive form game in which the stage game G is played

during T stages, past actions are publicly observed (perfect monitoring), and

players’ payoff is the δ-discounted sum (or average) payoff

• Action profile at stage t: at = (at
1, . . . , a

t
n) ∈ A = A1 × · · · × An

• History at stage t: ht−1 = (a1, a2, . . . , at−1) ∈ At−1 = A × · · · × A
︸ ︷︷ ︸

t−1 times

• Pure strategy of player i: si = (s1
i , . . . , s

T
i ), where st

i : At−1 → Ai

• Behavioral strategy of player i: σi = (σ1
i , . . . , σT

i ), where σt
i : At−1 → ∆(Ai)

• Outcome / trajectory generated by s:

a1 = s1, a2 = s2(a1), a3 = s3(a1, a2), . . .
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T -period repeated game has the property that at is a Nash equilibrium of G for all

t = 1, . . . , T .
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Unique Nash (and subgame perfect) equilibrium outcome of the finitely repeated

prisoner dilemma: defect in every stage

In the prisoner dilemma, equilibrium payoffs coincide with minmax payoffs

Proposition 1 If every equilibrium payoff profile of G coincides with the minmax

payoff profile of G then every Nash equilibrium outcome (a1, . . . , aT ) of the

T -period repeated game has the property that at is a Nash equilibrium of G for all

t = 1, . . . , T .

Remark If we weaken the equilibrium concept by asking only for approximate best

responses (ε-Nash equilibrium) then we can support cooperation for any ε > 0 in

the prisoner dilemma if the horizon T is sufficiently large
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A Variant of the Prisoner Dilemma.

D C P

D (1, 1) (3, 0) (−1,−1)

C (0, 3) (2, 2) (−2,−1)

P (−1,−1) (−1,−2) (−3,−3)
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A Variant of the Prisoner Dilemma.

D C P

D (1, 1) (3, 0) (−1,−1)

C (0, 3) (2, 2) (−2,−1)

P (−1,−1) (−1,−2) (−3,−3)

Unique Nash equilibrium of the stage game: (D, D)

2-stage game (without discounting):

– First stage: s1
i = C

– Second stage: s2
i (a

1
1, a

1
2) =







D if (a1
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A Variant of the Prisoner Dilemma.

D C P

D (1, 1) (3, 0) (−1,−1)

C (0, 3) (2, 2) (−2,−1)

P (−1,−1) (−1,−2) (−3,−3)

Unique Nash equilibrium of the stage game: (D, D)

2-stage game (without discounting):

– First stage: s1
i = C

– Second stage: s2
i (a

1
1, a

1
2) =







D if (a1
1, a

1
2) = (C, C)

P otherwise
is a Nash equilibrium

⇒ a Nash equilibrium of a finitely repeated game does not necessarily consist in

playing Nash equilibria of the stage game, even if the stage game has a unique

Nash equilibrium
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D C P

D (1, 1) (3, 0) (−1,−1)

C (0, 3) (2, 2) (−2,−1)

P (−1,−1) (−1,−2) (−3,−3)

But the unique subgame perfect Nash equilibrium (SPNE) is to play D in every

stage
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D C P

D (1, 1) (3, 0) (−1,−1)

C (0, 3) (2, 2) (−2,−1)

P (−1,−1) (−1,−2) (−3,−3)

But the unique subgame perfect Nash equilibrium (SPNE) is to play D in every

stage

Proposition 2 If the stage game G has a unique Nash equilibrium then for every

finite T and every discount factor δ ∈ (0, 1], the finitely repeated game G(T, δ) has

a unique SPNE, in which the Nash equilibrium of the stage game is played after all

histories
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New Behavior at Subgame Perfect Equilibria.

D C P

D (1, 1) (3, 0) (−1,−1)

C (0, 3) (2, 2) (−2,−1)

P (−1,−1) (−1,−2) (−1

2
, −

1

2
)

Two pure strategy NE in the stage game: (D, D) and (P, P )

2-stage repeated game (without discounting):

– First stage: s1
i = C

– Second stage: s2
i (a

1
1, a

1
2) =







D if (a1
1, a

1
2) = (C, C)

P otherwise
is a SPNE

⇒ a subgame perfect Nash equilibrium of a finitely repeated game does not

necessarily consist in playing Nash equilibria of the stage game
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C (0, 3) (2, 2) (−2,−1)

P (−1,−1) (−1,−2) (−1

2
, −

1

2
)

Two pure strategy NE in the stage game: (D, D) and (P, P )

2-stage repeated game (without discounting):

– First stage: s1
i = C

– Second stage: s2
i (a

1
1, a

1
2) =







D if (a1
1, a

1
2) = (C, C)

P otherwise
is a SPNE

⇒ a subgame perfect Nash equilibrium of a finitely repeated game does not

necessarily consist in playing Nash equilibria of the stage game

But in this example players punish with a “bad” Nash equilibrium. There is

therefore an incentive to “Renegotiate” in the second stage if (C, C) is not played

in the first stage
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An example with no incentive to “renegotiate”.
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An example with no incentive to “renegotiate”.

D C M N

D (1, 1) (3, 0) (0, 0) (−2, 0)

C (0, 3) (2, 2) (0, 0) (−2, 0)

M (0,−2) (0,−2) (2,−1) (−2,−2)

N (0, 0) (0, 0) (0, 0) (−1, 2)
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An example with no incentive to “renegotiate”.

D C M N

D (1, 1) (3, 0) (0, 0) (−2, 0)

C (0, 3) (2, 2) (0, 0) (−2, 0)

M (0,−2) (0,−2) (2,−1) (−2,−2)

N (0, 0) (0, 0) (0, 0) (−1, 2)

Three pure strategy Nash equilibria in the stage game:
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An example with no incentive to “renegotiate”.

D C M N

D (1, 1) (3, 0) (0, 0) (−2, 0)

C (0, 3) (2, 2) (0, 0) (−2, 0)

M (0,−2) (0,−2) (2,−1) (−2,−2)

N (0, 0) (0, 0) (0, 0) (−1, 2)

Three pure strategy Nash equilibria in the stage game:

(D, D), (M, M), and (N, N)

(not Pareto ordered)
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D C M N

D (1, 1) (3, 0) (0, 0) (−2, 0)

C (0, 3) (2, 2) (0, 0) (−2, 0)

M (0,−2) (0,−2) (2,−1) (−2,−2)

N (0, 0) (0, 0) (0, 0) (−1, 2)

A SPNE in the 2-stage repeated game (without discounting) with no incentive to

renegotiate:
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D C M N

D (1, 1) (3, 0) (0, 0) (−2, 0)

C (0, 3) (2, 2) (0, 0) (−2, 0)

M (0,−2) (0,−2) (2,−1) (−2,−2)

N (0, 0) (0, 0) (0, 0) (−1, 2)

A SPNE in the 2-stage repeated game (without discounting) with no incentive to

renegotiate:

– First stage: s1
i = C
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D C M N

D (1, 1) (3, 0) (0, 0) (−2, 0)

C (0, 3) (2, 2) (0, 0) (−2, 0)

M (0,−2) (0,−2) (2,−1) (−2,−2)

N (0, 0) (0, 0) (0, 0) (−1, 2)

A SPNE in the 2-stage repeated game (without discounting) with no incentive to

renegotiate:

– First stage: s1
i = C

– Second stage: s2
1(a

1
1, a

1
2) =







D if (a1
1, a

1
2) = (C, C) or {a1

1 and a1
2 6= C}

M if a1
1 = C and a1

2 6= C

N if a1
1 6= C and a1

2 = C
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D C M N

D (1, 1) (3, 0) (0, 0) (−2, 0)

C (0, 3) (2, 2) (0, 0) (−2, 0)

M (0,−2) (0,−2) (2,−1) (−2,−2)

N (0, 0) (0, 0) (0, 0) (−1, 2)

A SPNE in the 2-stage repeated game (without discounting) with no incentive to

renegotiate:

– First stage: s1
i = C

– Second stage: s2
1(a

1
1, a

1
2) =







D if (a1
1, a

1
2) = (C, C) or {a1

1 and a1
2 6= C}

M if a1
1 = C and a1

2 6= C

N if a1
1 6= C and a1

2 = C

s2
2(a

1
1, a

1
2) =







D if (a1
1, a

1
2) = (C, C) or {a1

1 and a1
2 6= C}

M if a1
1 = C and a1

2 6= C

N if a1
1 6= C and a1

2 = C
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Exercise 1 ✍ Consider the following stage game.

A B C D

A (4, 4) (0, 0) (18, 0) (1, 1)

B (0, 0) (6, 6) (0, 0) (1, 1)

C (0, 18) (0, 0) (13, 13) (1, 1)

D (1, 1) (1, 1) (1, 1) (0, 0)

(i) Find the pure-strategy NE

(ii) Consider the 2-period repeated game. Find a SPNE with undiscounted average

payoff equal to 3 for each player

(iii) To see how to construct equilibria with increasingly severe punishments as the

length of the game increases, consider the 3-period repeated game. Find a SPNE

with undiscounted average payoff equal to 13+6+6
3

= 25/3 for each player (hint: use

the strategy found in (ii) as a punishment for the last two stages)
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Infinitely Repeated Games
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Infinitely Repeated Games

Definition Given a normal form game G = 〈N, (Ai), (ui)〉, the infinitely repeated

game G(∞, δ) is the extensive form game in which the stage game G is played

infinitely often, past actions are publicly observed (perfect monitoring), and players’

payoff is the δ-discounted average payoff
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Infinitely Repeated Games

Definition Given a normal form game G = 〈N, (Ai), (ui)〉, the infinitely repeated

game G(∞, δ) is the extensive form game in which the stage game G is played

infinitely often, past actions are publicly observed (perfect monitoring), and players’

payoff is the δ-discounted average payoff

Definition A payoff profile x ∈ R
n is feasible in the infinitely repeated game if

there is a correlated strategy profile ρ ∈ ∆(A) such that

xi =
∑

a∈A

ρ(a) ui(a), ∀ i ∈ N
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Infinitely Repeated Games

Definition Given a normal form game G = 〈N, (Ai), (ui)〉, the infinitely repeated

game G(∞, δ) is the extensive form game in which the stage game G is played

infinitely often, past actions are publicly observed (perfect monitoring), and players’

payoff is the δ-discounted average payoff

Definition A payoff profile x ∈ R
n is feasible in the infinitely repeated game if

there is a correlated strategy profile ρ ∈ ∆(A) such that

xi =
∑

a∈A

ρ(a) ui(a), ∀ i ∈ N

☞ Convex combination, conv(u(A)), of all possible payoffs of the stage game
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Example. Feasible payoffs in a prisoner dilemma

D C

D (1, 1) (3, 0)

C (0, 3) (2, 2)
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Example. Feasible payoffs in a prisoner dilemma

D C

D (1, 1) (3, 0)

C (0, 3) (2, 2)

0 1 2 3
0

1

2

3

b

b

b

b



F. Koessler / September 3, 2007 Repeated Games



F. Koessler / September 3, 2007 Repeated Games

Example. Feasible payoffs in a “battle of sexes” game

a b

a (3, 2) (1, 1)

b (0, 0) (2, 3)

0 1 2 3
0

1

2

3

b

b

b

b
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Example. Feasible payoffs in a “battle of sexes” game

a b

a (3, 2) (1, 1)

b (0, 0) (2, 3)

0 1 2 3
0

1

2

3

b

b

b

b

Remark The set of feasible payoffs is usually strictly larger than the set of

expected payoffs achievable with mixed (independent) strategies of the one-shot

game. For example, the expected payoff profile (2.5, 2.5) is not achievable with

mixed strategies in the one-shot battle of sexes
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Automaton Representation of Strategies

Automaton for i in the infinitely repeated game:
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• Set of states Ei

• Initial state e0
i ∈ Ei

• Output function fi : Ei → Ai
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Automaton Representation of Strategies

Automaton for i in the infinitely repeated game:

• Set of states Ei

• Initial state e0
i ∈ Ei

• Output function fi : Ei → Ai

• Transition function τi : Ei × A → Ei
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Remarks.
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Remarks.

• Sometimes the transition function is defined by τi : Ei × A
−i → Ei (i’s action

does not depend on his own past actions)
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Remarks.

• Sometimes the transition function is defined by τi : Ei × A
−i → Ei (i’s action

does not depend on his own past actions)

• The complexity of a strategy is sometimes defined by the number of states of

the smallest automaton that implements it
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Example. Infinitely repeated prisoner dilemma

“Grim” strategy: Start playing C and then play C iff both players always played C

• E = {e0, e1} • f(e0) = C and f(e1) = D

• τ(e, a) =







e0 if e = e0 and a = (C, C)

e1 otherwise
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Example. Infinitely repeated prisoner dilemma

“Grim” strategy: Start playing C and then play C iff both players always played C

• E = {e0, e1} • f(e0) = C and f(e1) = D

• τ(e, a) =







e0 if e = e0 and a = (C, C)

e1 otherwise

e0 : C

{(C, C)}

e1 : D

{a ∈ A}

{a 6= (C, C)}
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“Tit for Tat” strategy of player 1: Start playing C and then play C iff the opponent

has played C in the previous stage
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“Tit for Tat” strategy of player 1: Start playing C and then play C iff the opponent

has played C in the previous stage

• E = {e0, e1}

• f(e0) = C and f(e1) = D

• τ(e, a) = e iff a = (·, f(e))
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“Tit for Tat” strategy of player 1: Start playing C and then play C iff the opponent

has played C in the previous stage

• E = {e0, e1}

• f(e0) = C and f(e1) = D

• τ(e, a) = e iff a = (·, f(e))

e0 : C

{(·, C)}

e1 : D

{(·, D)}

{(·, D)}

{(·, C)}
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“Tit for Tat” strategy of player 1: Start playing C and then play C iff the opponent

has played C in the previous stage

• E = {e0, e1}

• f(e0) = C and f(e1) = D

• τ(e, a) = e iff a = (·, f(e))

e0 : C

{(·, C)}

e1 : D

{(·, D)}

{(·, D)}

{(·, C)}

Both players play “grim” or “Tit for Tat” ⇒ cooperation in every period
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Exercise 2 ✍ Consider the infinitely repeated PD, with G equal to

D C

D (1, 1) (3, 0)

C (0, 3) (2, 2)

(i) Consider the following strategy of player 1: start to cooperate, continue to

cooperate as long as player 2 cooperates, and defect for two periods and go back to

cooperation if player 2 defects. Write and represent the simplest automaton

implementing this strategy

(ii) Consider the following strategy of player 2: cooperate in odd periods and defect

in even periods, whatever the actions of player 1. Write and represent the simplest

automaton implementing this strategy

(iii) Calculate the undiscounted average payoffs of both players when they play the

previous strategy profile

(iv) Find a (pure) strategy that cannot be implemented with a finite automaton
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Given a strategy σi of player i, let

σi|ht

be the continuation strategy of player i induced by history ht ∈ At, i.e., the strategy

implied by σi in the continuation game that follows ht
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Given a strategy σi of player i, let

σi|ht

be the continuation strategy of player i induced by history ht ∈ At, i.e., the strategy

implied by σi in the continuation game that follows ht

Definition A strategy profile σ is a subgame perfect Nash equilibrium of the

infinitely repeated game if for all histories ht, σ|ht is a Nash equilibrium of the

repeated game
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Given a strategy σi of player i, let

σi|ht

be the continuation strategy of player i induced by history ht ∈ At, i.e., the strategy

implied by σi in the continuation game that follows ht

Definition A strategy profile σ is a subgame perfect Nash equilibrium of the

infinitely repeated game if for all histories ht, σ|ht is a Nash equilibrium of the

repeated game

Definition A one-shot deviation for player i from strategy σi is a strategy σ̂i 6= σi

with the property that there exists a unique history h̃t such that for all hτ 6= h̃t:

σi(h
τ ) = σ̂i(h

τ )

Hence, a one-shot deviation agrees with the original strategy everywhere except at

one history h̃t where the one-shot deviation occurs
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Proposition 3 (The one-shot deviation principle) A strategy profile σ is a subgame

perfect equilibrium of an infinitely δ-discounted repeated game if and only if there is

no profitable one-shot deviation
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Proposition 3 (The one-shot deviation principle) A strategy profile σ is a subgame

perfect equilibrium of an infinitely δ-discounted repeated game if and only if there is

no profitable one-shot deviation

Clearly, the one-shot deviation principle (OSDP) also applies for SPNE in finitely

repeated games

But the one-shot deviation principle does not apply for Nash equilibrium, as the

following example shows

Example 2 Consider the Tit for Tat strategy profile in the following PD, leading to

an average discounted payoff of 3

D C

D (1, 1) (4,−1)

C (−1, 4) (3, 3)
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One-shot deviation by player 1 ⇒ cyclic outcome DC, CD, DC, CD, . . . with

average discounted payoff

(1 − δ)(4(1 + δ2 + δ4 + · · · ) − 1(δ + δ3 + · · · ))

= (1 − δ)(
4

1 − δ2
−

δ

1 − δ2
) =

4 − δ

1 + δ
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One-shot deviation by player 1 ⇒ cyclic outcome DC, CD, DC, CD, . . . with

average discounted payoff

(1 − δ)(4(1 + δ2 + δ4 + · · · ) − 1(δ + δ3 + · · · ))

= (1 − δ)(
4

1 − δ2
−

δ

1 − δ2
) =

4 − δ

1 + δ

The deviation is not profitable if 4−δ
1+δ

≤ 3, i.e., δ ≥ 1/4



F. Koessler / September 3, 2007 Repeated Games

One-shot deviation by player 1 ⇒ cyclic outcome DC, CD, DC, CD, . . . with

average discounted payoff
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4

1 − δ2
−

δ

1 − δ2
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4 − δ

1 + δ
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1+δ
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But the deviation to perpetual defection (which is not a one-shot deviation) is

profitable when (1 − δ)(4 + δ
1−δ

) > 3, i.e., δ < 1/3
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One-shot deviation by player 1 ⇒ cyclic outcome DC, CD, DC, CD, . . . with

average discounted payoff

(1 − δ)(4(1 + δ2 + δ4 + · · · ) − 1(δ + δ3 + · · · ))

= (1 − δ)(
4

1 − δ2
−

δ

1 − δ2
) =

4 − δ

1 + δ

The deviation is not profitable if 4−δ
1+δ

≤ 3, i.e., δ ≥ 1/4

But the deviation to perpetual defection (which is not a one-shot deviation) is

profitable when (1 − δ)(4 + δ
1−δ

) > 3, i.e., δ < 1/3

⇒ For δ ∈ [1/4, 1/3) TFT is not a NE despite the absence of profitable one-shot

deviations
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One-shot deviation by player 1 ⇒ cyclic outcome DC, CD, DC, CD, . . . with

average discounted payoff

(1 − δ)(4(1 + δ2 + δ4 + · · · ) − 1(δ + δ3 + · · · ))

= (1 − δ)(
4

1 − δ2
−

δ

1 − δ2
) =

4 − δ

1 + δ

The deviation is not profitable if 4−δ
1+δ

≤ 3, i.e., δ ≥ 1/4

But the deviation to perpetual defection (which is not a one-shot deviation) is

profitable when (1 − δ)(4 + δ
1−δ

) > 3, i.e., δ < 1/3

⇒ For δ ∈ [1/4, 1/3) TFT is not a NE despite the absence of profitable one-shot

deviations

Exercise 3 ✍ Show that TFT is never a SPNE of the previous infinitely repeated

PD whatever the discount factor δ (hint: use the one-shot deviation property in the

possible types of subgames)
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Conditions for the “grim” strategy profile to be a SPNE? We use the OSDP
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Conditions for the “grim” strategy profile to be a SPNE? We use the OSDP

Period t along the equilibrium path:

C −→ (1 − δ)[V + 3δt−1 + 3δt + 3δt+1 + · · · ]

D −→ (1 − δ)[V + 4δt−1 + 1δt + 1δt+1 + · · · ]
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Conditions for the “grim” strategy profile to be a SPNE? We use the OSDP

Period t along the equilibrium path:

C −→ (1 − δ)[V + 3δt−1 + 3δt + 3δt+1 + · · · ]

D −→ (1 − δ)[V + 4δt−1 + 1δt + 1δt+1 + · · · ]

Playing D is not a profitable deviation if

3δt−1 + 3δt + 3δt+1 + · · · ≥ 4δt−1 + 1δt + 1δt+1 + · · ·

⇔
3

1 − δ
≥ 4 +

δ

1 − δ
⇔ δ ≥ 1/3
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Conditions for the “grim” strategy profile to be a SPNE? We use the OSDP

Period t along the equilibrium path:

C −→ (1 − δ)[V + 3δt−1 + 3δt + 3δt+1 + · · · ]

D −→ (1 − δ)[V + 4δt−1 + 1δt + 1δt+1 + · · · ]

Playing D is not a profitable deviation if

3δt−1 + 3δt + 3δt+1 + · · · ≥ 4δt−1 + 1δt + 1δt+1 + · · ·

⇔
3

1 − δ
≥ 4 +

δ

1 − δ
⇔ δ ≥ 1/3

In the subgames off the equilibrium path (i.e., ∃ s < t, as
1 or as

2 = D) we have

C −→ (1 − δ)[W − 1δt−1 + 1δt + 1δt+1 + · · · ]

D −→ (1 − δ)[W + 1δt−1 + 1δt + 1δt+1 + · · · ]
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⇒ a SPNE of an infinitely repeated game does not necessarily consist in playing

NE of the stage game in every period, even if the stage game has a unique NE
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⇒ a SPNE of an infinitely repeated game does not necessarily consist in playing

NE of the stage game in every period, even if the stage game has a unique NE

Exercise 4 ✍ Find the condition on δ for the grim strategy profile to be a SPNE in

the prisoner dilemma of Exercise 2
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“Folk Theorems”
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“Folk Theorems”

Figure 1: Robert Aumann (1930– ), Nobel price in economics in 2005
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Proposition 4 If (x1, . . . , xn) is a feasible and strictly individually rational payoff

profile, and if δ is sufficiently close to 1, then there exits a Nash equilibrium of the

infinitely repeated game G(∞, δ) in which the discounted average payoff profile is

(x1, . . . , xn)
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☞ The player who deviates from the strategy profile leading to (x1, . . . , xn) is

minmaxed in all remaining periods (“trigger strategy”)
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Proposition 4 If (x1, . . . , xn) is a feasible and strictly individually rational payoff
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game G and (x1, . . . , xn) a feasible payoff profile. If xi > ei for every i and if δ is
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infinitely repeated game G(∞, δ) in which the discounted average payoff profile is
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Proposition 4 If (x1, . . . , xn) is a feasible and strictly individually rational payoff

profile, and if δ is sufficiently close to 1, then there exits a Nash equilibrium of the

infinitely repeated game G(∞, δ) in which the discounted average payoff profile is

(x1, . . . , xn)

☞ The player who deviates from the strategy profile leading to (x1, . . . , xn) is

minmaxed in all remaining periods (“trigger strategy”)

Proposition 5 Let (e1, . . . , en) be a Nash equilibrium payoff profile of the stage

game G and (x1, . . . , xn) a feasible payoff profile. If xi > ei for every i and if δ is

sufficiently close to 1, then there exists a subgame perfect Nash equilibrium of the

infinitely repeated game G(∞, δ) in which the discounted average payoff profile is

(x1, . . . , xn)

The folk theorems provide a simple equilibrium characterization. But the negative

aspect is that predictive powers are limited
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Example: Prisoner dilemma

D C

D (1, 1) (3, 0)

C (0, 3) (2, 2)

0 1 2 3
0

1

2

3

Feasible payoffs

Individually rational payoffs

Equilibrium payoffs

But the prisoner dilemma is special in the sense that the Nash equilibrium payoff

profile of the stage game coincides with the minmax payoff profile
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Collusion in a Repeated Cournot Oligopoly

n firms produce an identical product with constant marginal cost c < 1

Cournot competition: firms simultaneously choose quantities of outputs qi ∈ R+,

i = 1, . . . , n

Market price:

p = 1 −
n∑

j=1

qj

Profit of firm i:

ui(q1, . . . , qn) = qi(1 −
n∑

j=1

qj − c)

FOC for firm i: 1 −
∑n

j 6=i qj − 2q∗i − c = 0

⇒ q∗i = 1 −
∑n

j=1 q∗j − c for all i

⇒ the equilibrium must be symmetric (q∗i = qi ∀ i) and ui(q∗i , q−i) = (q∗i )
2
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⇒ q∗ = 1 − nq∗ − c = 1−c
n+1

⇒ ui(q∗, . . . , q∗) = ( 1−c
n+1

)2

⇒ Market equilibrium price p∗ = 1 − nq∗ = 1
n+1

+ n
n+1

c

When n increases the equilibrium outcome approaches that of a competitive market

(price → marginal cost)

Total quantities n(1−c)

n+1
increase, so the consumers’ welfare increases

Are less concentrated markets still more competitive and welfare improving for

consumers in the repeated Cournot game?

Not necessarily . . .

To simplify, let c = 0
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Collusion. Each firm produces 1
2n

as long as every firm has done so in every

previous period, and 1
n+1

otherwise (∼ “grim” strategy in PD)

Hence, along the equilibrium path, total quantities and the market price are equal

to 1/2, as in the monopoly market

Firm i’s profit is 1
2n

1
2

= 1
4n

. Firm i does not deviate if (use the OSDP)

1

4n
(1 + δ + δ2 + · · · ) ≥ Yi + (

1

n + 1
)2(δ + δ2 + · · · )

where Yi is i’s profit when i deviates to its stage game best response

BRi(q−i) =
1−

∑

j 6=i
qj

2
= 1−(n−1)/2n

2
= n+1

4n
, i.e., Yi = (n+1

4n
)2

The no-deviation condition becomes

1

4n(1 − δ)
≥ (

n + 1

4n
)2 +

δ

(1 − δ)(n + 1)2

i.e., δ ≥ n2+2n+1
n2+6n+1

< 1

Conclusion: At a SPNE of the infinitely repeated Cournot game the firms can

jointly reproduce the monopoly outcome of the market when the discount factor is

sufficiently large
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The Folk Theorems applied to the repeated Cournot competition.

➢ The minmax payoff is zero, so every feasible payoff in which all firms earn

strictly positive profits can be achieved as a Nash equilibrium outcome if firms are

sufficiently patient

➢ Every feasible payoff in which all firms earn strictly more than in the one-shot

Cournot game can be achieved as a subgame perfect Nash equilibrium outcome if

firms are sufficiently patient

Remark The folk theorem for SPNE is actually more general than in Proposition 5

but use more complicate punishments than Nash equilibria of the stage game. This

is irrelevant in the PD because the NE of the stage game is the most severe

punishment available. But this last property is not true in all games (e.g., in the

Cournot oligopoly game)
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