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‘Negotiation: Strategic Approach'

(September 3, 2007)

How to divide a pie / find a compromise among several possible allocations?
[1 Wage negotiations

[1 Price negotiation between a seller and a buyer

Bargaining Situation:

(i) Individuals are able to make mutually beneficial agreements

(ii) There is a conflict of interest over the set of possible agreements

(iii) Every agent can individually reject any proposal
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Before Nash (1950, 1953), the only solution proposed by economic theory is that
the agreement should be:

e individually rational (i.e., better than full disagreement)
e Pareto optimal (i.e., no other agreement is strictly better for all agents)

Nash suggests two kinds of solutions:
[1 The axiomatic approach: what properties should the solution satisfy?

[ The strategic (non-cooperative) approach: what is the equilibrium outcome of

a specific and explicit bargaining situation?

Here, strategic approach [: The bargaining problem is represented as an extensive

form game (alternating offers, perfect information)

[1 Explicit bargaining rules
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Two players bargain to share an homogeneous “pie” (surplus), whose size is

normalized to 1

An offer is a pair (z1,x2)

Set of all possible agreements (Pareto optimal offers):
X = {(Cljl,fljg) - Ra_ X1+ x2 = 1}

Examples:
[1 Sharing one euro: x; = amount of money for player 2
[0 Price negotiation: x3 = price paid by the buyer (player 1) to the seller (player 2)

[J Wage negotiation: x; = profit of the firm (player 1)

Preferences: Player i prefers x = (x1,22) € X toy = (y1,y2) € X iff x; > y;
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‘Point of Departure: Ultimatum Game (continuous)'

First period: player 1 offers x = (x1,x2) € X

Second period: player 2 Accepts (A) or Rejects (R) the offer. If he rejects they
both get 0

Extensive form:

(xla xz) (07 O)
[1 Is every agreement a Nash equilibrium outcome?

Unique SPNE: player 1 proposes (1,0) and player 2 accepts every offer
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(y1,92)  (0,0)

Now, it is player 2 who has all the bargaining power

Backward induction = solution y = (0,1) and A in the second period
= x = (0,1), or x # (0,1) and R in the first period

= at every SPNE player 2 obtains all the pie
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More generally, whatever the length of the game, the player who makes the last

offer obtains all the pie
But time is valuable, delay in bargaining is costly ...

Discount factor 9; € (0, 1) for player 4

(01y1,6292) (0,0)
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_ _ (61 y1,02y2) (0,0)
Backward induction:

Subgame after player 2's rejection: unique SPNE: player 2 proposes (0, 1) and
player 1 accepts every offer = payoff (0, d2)

Subgame after player 1's proposal: player 2 accepts x2 > d2 and rejects 2 < 92 =
player 1 proposes (x1,x2) = (1 — d2,92) in the first period
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Finite Horizon Bargaining'

i (j) = player 1 if T is odd (even) i (j) = player 2 if T is even (odd)
[J Backward induction
[0 Check that if T'= 3 then ! = (1 — §2(1 — 81), 62(1 — 61))
[0 Check that if T = 4 then z! = (1 — (52(1 — 51(1 — 52)), 52(1 — (51(1 — (52)))

Problem: the solution depends significantly on the exact deadline
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i (j) = player 1 if t is odd (even)
i (j) = player 2 if t is even (odd)
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Remarks.

[1 Every subgame starting with player 1's offer is equivalent to the entire game
[1 Unique asymmetry in the game tree: player 1 is the first to make an offer

[ It is common knowledge that players only care about the final agreement x and
the period at which this agreement is reached (very strong assumption)

[0 The structure of the game is repeated, but it is not a repeated game (A = end
of the “repetition”)
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ol X7 = X iftis odd
o : X1 - {A R} iftis even

Pure strategy of player 1: Sequence 7 = (7)$2,, where

7t X1 5 X iftis even

i X7 - {A R} iftis odd
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A
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Stationary strategies: do not depend on the period and on past offers

Player 1:
ol(x'™1) = 2* if ¢ is odd
A ifzlt>7
ol(x'™1) = b= if ¢ is even
R ifz2lt <z
Player 2:

iz = if ¢ is even
A ifalt >,

izt = if ¢ is odd
R ifzlt <7,

Accepted offers at the SPNE: V¢, Vo<1 U yi == and 3 =7,
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Player 2 in (odd) period t given those strategies:

t—1 « ¢t—1 % t ., x St ,x*
0, x],05 x A 01 Y1, 05 Y5

Equilibrium = &'l = 6t y3, e, x5 = 62y
Symmetric reasoning for player 1 = yi = 41 x]

Hence

3
|

) 1—38, 62(1—61)
(1—&@’1—5ﬁ2)

(851 =8) 1-6&
(1—&@’1—&@)

<
|
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[ Find a Nash equilibrium (specify the complete strategies, the outcome and the
payoffs) that is not Pareto optimal. Explain why this Nash equilibrium is not a

subgame perfect Nash equilibrium

Proposition. (Rubinstein, 1982) The preceding stationary strategy profile, i.e.,
e Player 1 always offers x* and accepts an offer x iff x1 > y7

e Player 2 always offers y* and accepts an offer x iff xo > x5

3
|

1 — 38162 1— 8102

) (&ﬂ—ﬁﬁ 1—51)
1 — 6102 ' 1— 6109

where
( 1 —02 92(1 — 51))

5S
|
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[ Find a Nash equilibrium (specify the complete strategies, the outcome and the
payoffs) that is not Pareto optimal. Explain why this Nash equilibrium is not a

subgame perfect Nash equilibrium

Proposition. (Rubinstein, 1982) The preceding stationary strategy profile, i.e.,
e Player 1 always offers x* and accepts an offer x iff x1 > y7

e Player 2 always offers y* and accepts an offer x iff xo > x5

where
. (1—52 52(1—51))
€Tr =
1—5152’ 1 — d109

*_(51(1—52) 1—51)
Y T\ 26160 1 — 610

Is the unique subgame perfect Nash equilibrium of the alternating offer bargaining

game with perfect information
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Equilibrium Properties.
e Efficiency in the sense of Pareto (no delay)

e Patience of player ¢ increases (§; T) = player i's share increases

N~

. s _ : 11 1
e First-mover advantage: if 01 = 09 the first player gets 55 > 2 but s

as o — 1

Remarks.

[1 If proposals are simultaneous in each period then every Pareto optimal share is
a SPNE outcome

[1 If only one player is able to make offers then, at a SPNE, he obtains all the pie
in the first period
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As in the basic model the unique SPNE is a stationary strategy profile
e Player 1 always proposes x* and accepts a proposal z iff x1 > yJ

e Player 2 always proposes y* and accepts a proposal =z iff zo > x5

Player 1 at some period given this strategy:

vl Y5

(b1, b2)

Equilibrium = yf =ab + (1 — a)x]

Symmetric reasoning for player 2 = x3 =abs+ (1 — o) y;
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Hence

£ )

. (1—b2—|—(1—()é)bl (1—0&)(1—[)1)+b2>
2 —« 2 —«

\ ((1—a)(1—b2)+b1 1—b1+(1—a)b2>

Y

<
|

2 — « 2 — «
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Hence

L )

) (1—b2—|—(1—a)b1 (1—a)(1—bl)-|—b2>

2 —« 2 — «
« ((1—a)(1—b2)—|—b1 1—b1—|—(1—a)b2)
Yy = ;
2 -« 2 —«
Allocation when the probability of breakdown a — O:
1—5b6;1—b 1—5b6;1—0b
:C*—><bl—|- ; Q,bg—l— ; 2)

[0 Each player gets his payoff in the event of breakdown (b;) and we split equally
the excess of the pie (%)
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