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Introduction

Basic ingredients of non-cooperative games:

• Individuals’ strategies

• Outcome of the game = strategy profile

• Players’ preferences over outcomes

Basic ingredients of cooperative games:

• Actions of coalitions (groups of individuals)

• Outcome of the game = formed coalitions (→ partition of the set of players)

and actions of coalitions

• Players’ preferences over outcomes (as in non-cooperative games)
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Solution concept in cooperative games: set of outcomes for each game

➥ stability (in general), as in non-cooperative games, but towards groups of

players

Contrary to non-cooperative games, no detail is given on how groups form and

make decisions
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Negotiation: Cooperative / Axiomatic Approach

➥ Study bargaining games with cooperative game theory

☞ No assumption on how negotiation takes place

☞ Which outcomes have “reasonable” properties?

☞ How does the solution varies with players’ preference and opportunities?

➥ Nash bargaining solution

X: set of possible agreements

D: disagreement outcome

ui : X ∪ {D} → R: player i utility function

U = {(v1, v2) = (u1(x), u2(x)) : x ∈ X}: possible pairs of payoffs

d = (u1(D), u2(D)): pair of disagreement payoffs
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Definition. A bargaining problem is a pair (U , d), where U is the set of possible

payoffs, d = (d1, d2) is the disagreement payoff, such that:

(i) d ∈ U

(ii) There exists (v1, v2) ∈ U s.t. v1 > d1 and v2 > d2

(iii) The set U is compact (closed and bounded) and convex

Example. Exchange economy. Disagreement point ∼ initial endowments

Remark. By (ii) the disagreement point d is not Pareto optimal

Definition. A bargaining solution is a function ψ that associates with every

bargaining problem (U , d) a unique member ψ(U , d) of U
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Axioms

➥ List of “reasonable” conditions a solution should satisfy

ψ(U , d) = (ψ1(U , d), ψ2(U , d)) ∈ U

Remark. Implicit axiom: existence and uniqueness of ψ(U , d) for every (U , d)

✦ Pareto optimality (PAR). For every bargaining problem (U , d), the bargaining

solution ψ(U , d) is not Pareto dominated by a pair (v1, v2) of U : ∄ (v1, v2) ∈ U s.t.

vi ≥ ψi(U , d), i = 1, 2, with at least one strict inequality

➥ No possible renegotiation improving both players’ payoffs
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d

U

v1

v2 Efficient allocations
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✦ Symmetry (SYM). (“Equity”) If the bargaining problem (U , d) is symmetric,

i.e., (v1, v2) ∈ U ⇔ (v2, v1) ∈ U (the 45◦ line is a line of symmetry of U) and

d1 = d2, then the bargaining solution gives every player the same payoff:

ψ1(U , d) = ψ2(U , d)

➥ These two axioms give a unique solution for symmetric games
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d

45◦

U

v1

v2

t

Unique bargaining solution
satisfying PAR and SYM

Figure 1:
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✦ Invariance to equivalent payoff representations (INV). If the bargaining

problem (U ′, d′) is derived from another bargaining problem (U , d) by an increasing

affine transformation (v′i = αi vi + βi and d′i = αi di + βi, i = 1, 2, αi > 0), then

the solution of the transformed problem for player i is the transformation of the

solution of the original problem:

ψi(U
′, d′) = αi ψi(U , d) + βi (i = 1, 2)

➥ Consistency with the cardinality of expected utility functions

➥ Without loss of generality we can assume d = (0, 0)

⇒ With these three axioms we get a unique solution for every bargaining problem

that can be obtained as a linear transformation of a symmetric bargaining problem
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d′

U ′

v1

v2

t

Unique bargaining solution
satisfying PAR, SYM and INV

Monotone affine transformation

of the problem of figure 1

v′1 = 1

2
v1

v′2 = v2 + 30
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A last axiom is required

✦ Independence of irrelevant alternatives (IIA). (invariance to contraction) If

two bargaining problems (U , d) and (U ′, d) with the same disagreement point are

such that U ⊆ U ′ and ψ(U ′, d) ∈ U then ψ(U , d) = ψ(U ′, d)

Remark. If ψ is obtained by maximizing a function on U then this axiom is satisfied
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tv
∗

U ′

U

U ′

U

t v
∗

If U ⊆ U ′ and ψ(U ′, d) = v∗ ∈ U then ψ(U , d) = v∗
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Proposition. (Nash Theorem) One and only one bargaining solution satisfies the

four axioms PAR, SYM, INV and IIA. It is the Nash bargaining solution, that

assigns to every bargaining problem (U , d) the pair of payoffs that maximizes the

Nash product:

max
v

(v1 − d1)(v2 − d2) s.t. v ∈ U and v ≥ d

✍ Verify that the Nash solution satisfies the 4 axioms (⇒ existence)

For any value of c, the set of points (v1, v2) such that

(v1 − d1)(v2 − d2) = c

is an hyperbola ⇒ the Nash solution is the pair (v1, v2) in U on the highest such

hyperbola
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d′

U ′

v1

v2

u

(v1 − d′1)(v2 − d′2) = constant
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Intuition for the proof of uniqueness.

Let ψN(U , d) = vN be the Nash solution and ψ∗(U , d) a solution satisfying the 4

axioms. We show that ψN = ψ∗

INV ⇒ without loss of generality d = (0, 0) and vN = (1, 1) (new scale → vi−di

vN

i
−di

)

vN solves maxv∈U (v1 · v2) ⇒ vN tangent to v1 · v2 = 1. Equation of the tangent:

v1 + v2 = 2

U is convex ⇒ U is below the tangent

⇒ we can include U into a large symmetric rectangle U ′ (see figure)

PAR , SYM ⇒ ψ∗(U ′, d) = vN

IIA ⇒ ψ∗(U , d) = ψ∗(U ′, d) = vN because U ⊆ U ′
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U
U ′

d v1

v2

t vN = (1, 1)

v1 · v2 = 1

v1 + v2 = 2
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Link with the Strategic Approach

(“Nash Program”)

Consider a bargaining problem (U , d) where U = {(v1, v2) ∈ R2
+ : v1 + v2 ≤ 1}

(

d1 + 1

2
(1 − d1 − d2),

d2 + 1

2
(1 − d1 − d2)

)

v1

v2

d1

d2

U

☞ The Nash solution is the SPNE outcome of the alternating offers bargaining

game with risk of breakdown α→ 0 (without discounting), where d = b is the pair

of payoffs when negotiations terminate (Binmore et al., 1986)
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Generalization to n players?

• 1st obvious solution: U ⊆ Rn, disagreement point d = (d1, . . . , dn) ∈ U

Interpretation: either all agree on v ∈ U , or disagreement d

➥ max
v∈U

n
∏

i=1

(vi − di) s.t. v ≥ d

. . . but this solution ignores coalitions formations and their influences on the

solution

• 2nd solution: taking into coalitions formations, or at least the potential threat

of coalitions formations
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Coalitions and Characteristic Functions

(September 3, 2007)

Coalitional game: model of interactive decisions based on the behavior of coalitions

of players

A coalition is a subset of players S ⊆ N ≡ {1, . . . , n}, S 6= ∅ (2n − 1 possible

coalitions)

S = {i}: coalition of one player (singleton)

S = N : coalition of all players (grand coalition)

Assumption: Transferable Utility games: we can make the sum of players’ utilities

in a coalition and redistribute it to its members

Definition. A TU coalitional game, or game in characteristic form, is a pair (N, v)

where

• N is the set of players

• v is a characteristic function which associates a value v(S) ∈ R to each

coalition S of N
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For every coalition S, v(S) is the total payoff for members of coalition S

(independently of players’ behavior outside S)

➥ v(S) = a priori power of group S

Definition. A game is

• symmetric if the value of a coalition only depends on its size: there is a

function f such that v(S) = f(|S|) for all S ⊆ N

• monotonic if S ⊆ T ⇒ v(S) ≤ v(T )

Assumption: Superadditivity: S ∩ T = ∅ ⇒ v(S ∪ T ) ≥ v(S) + v(T )

Remark.

• Superadditivity ⇒ v(N) ≥
∑

k v(Sk) for every partition {Sk}k of N

• If v(S) ≥ 0 ∀ S then superadditivity implies monotonicity

✍ Find a superadditive game which is not monotonic
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Simple Games

A coalitional game (N, v) is simple if v(S) = 1 (winning coalition) or v(S) = 0

(loosing coalition), and v(N) = 1

Remark. By superadditivity, if v(S) = 1 then v(N\S) = 0 and v(T ) = 1 for

S ⊆ T (but not ⇐)

A player j has a veto power if he belongs to all winning coalitions

(v(S) = 1 ⇒ j ∈ S)

A player j is a dictator if a coalition is winning iff player j belongs to it

(v(S) = 1 ⇔ j ∈ S)
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• Simple majority. A coalition is winning iff it includes at least 2 members
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v(1) = v(2) = v(3) = 0

v(1, 2) = v(1, 3) = v(2, 3) = v(1, 2, 3) = 1

• Unanimity. Only the grand coalition is winning

➥







v(1, 2, 3) = 1

v(S) = 0 for the other coalitions

• Veto game. A coalition is winning iff it includes player 2 and at least one other

player

➥







v(1) = v(2) = v(3) = v(1, 3) = 0

v(1, 2) = v(2, 3) = v(1, 2, 3) = 1

• Dictatorship. A coalition is winning iff it includes player 2

➥







v(1) = v(3) = v(1, 3) = 0

v(2) = v(1, 2) = v(2, 3) = v(1, 2, 3) = 1
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Problem: how to share v(N) among the n players?

The Core

No coalition can increase the payoff of all its members by deviating

For any payoff profile (xi)i∈N and coalition S we denote by x(S) =
∑

i∈S xi the

sum of payoffs of members in S

Definition. A payoff profile (xi)i∈N is S-feasible if x(S) = v(S). It is feasible if it

is N-feasible



Game Theory Cooperative Games

Definition. The core of a coalitional game (N, v) is the set of feasible allocations

(xi)i∈N such that

x(S) ≥ v(S) ∀ S ⊆ N



Game Theory Cooperative Games

Definition. The core of a coalitional game (N, v) is the set of feasible allocations

(xi)i∈N such that

x(S) ≥ v(S) ∀ S ⊆ N

or, equivalently, such that there is no coalition S and S-feasible allocation (yi)i∈N

with yi > xi for every i ∈ S



Game Theory Cooperative Games

Definition. The core of a coalitional game (N, v) is the set of feasible allocations

(xi)i∈N such that

x(S) ≥ v(S) ∀ S ⊆ N

or, equivalently, such that there is no coalition S and S-feasible allocation (yi)i∈N

with yi > xi for every i ∈ S

☞ The allocation (xi)i∈N cannot be blocked by a coalition S (“social stability”)



Game Theory Cooperative Games

Definition. The core of a coalitional game (N, v) is the set of feasible allocations

(xi)i∈N such that

x(S) ≥ v(S) ∀ S ⊆ N

or, equivalently, such that there is no coalition S and S-feasible allocation (yi)i∈N

with yi > xi for every i ∈ S

☞ The allocation (xi)i∈N cannot be blocked by a coalition S (“social stability”)

Remark. Collective rationality (x(N) = v(N)) and individual rationality

(xi ≥ v(i) ∀ i) are satisfied
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Majority.







































x1 + x2 + x3 = 1

xi ≥ 0, ∀ i

x1 + x2 ≥ 1

x1 + x3 ≥ 1

x2 + x3 ≥ 1

⇒ impossible (core = ∅)

Unanimity.

Core = {(x1, x2, x3) : x1 + x2 + x3 = 1, xi ≥ 0 ∀ i}



Game Theory Cooperative Games

Veto power.



Game Theory Cooperative Games

Veto power.



























x1 + x2 + x3 = 1

xi ≥ 0, ∀ i

x1 + x2 ≥ 1

x2 + x3 ≥ 1



Game Theory Cooperative Games

Veto power.



























x1 + x2 + x3 = 1

xi ≥ 0, ∀ i

x1 + x2 ≥ 1

x2 + x3 ≥ 1

⇒ Core = {(0, 1, 0)}



Game Theory Cooperative Games

Veto power.



























x1 + x2 + x3 = 1

xi ≥ 0, ∀ i

x1 + x2 ≥ 1

x2 + x3 ≥ 1

⇒ Core = {(0, 1, 0)}

Dictatorship.



Game Theory Cooperative Games

Veto power.



























x1 + x2 + x3 = 1

xi ≥ 0, ∀ i

x1 + x2 ≥ 1

x2 + x3 ≥ 1
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Dictatorship.

Core = {(0, 1, 0)}
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x1 + x2 + x3 = 1

xi ≥ 0, ∀ i

x1 + x2 ≥ 1

x2 + x3 ≥ 1

⇒ Core = {(0, 1, 0)}

Dictatorship.

Core = {(0, 1, 0)}

➥ No difference between veto and dictatorship. (The Shapley value will make a

difference)
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Proposition. In a simple game,

(i) if no player has a veto power then the core is empty

(ii) if at least one player has a veto power the core is non-empty: it is the set of

positive and feasible allocations giving zero payoff to all non-veto players

Proof.

(i) No player has a veto power ⇔ ∀ i ∈ N , ∃ S s.t. v(S) = 1 and i /∈ S, so

v(N\i) = 1 for all i (monotonicity)

x ∈ Core ⇒ x(N) = 1 and x(N\i) ≥ v(N\i) = 1 for all i ⇒ impossible

(ii) Let V 6= ∅ be the set of veto players and x a positive and feasible allocation

giving zero payoff to all non-veto players:



Game Theory Cooperative Games

xi ≥ 0 ∀ i ∈ V

xi = 0 ∀ i /∈ V
∑

i∈N

xi = 1



















(1)

• If S is winning then V ⊆ S, so x(S) = 1 = v(S)

• If S is loosing then v(S) = 0, so x(S) ≥ v(S)

thus x ∈ core



Game Theory Cooperative Games

xi ≥ 0 ∀ i ∈ V

xi = 0 ∀ i /∈ V
∑

i∈N

xi = 1



















(1)

• If S is winning then V ⊆ S, so x(S) = 1 = v(S)
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xi ≥ 0 ∀ i ∈ V

xi = 0 ∀ i /∈ V
∑

i∈N

xi = 1



















(1)

• If S is winning then V ⊆ S, so x(S) = 1 = v(S)

• If S is loosing then v(S) = 0, so x(S) ≥ v(S)

thus x ∈ core

To show that only allocations (1) belong to the core, let x be a core allocation that

does not satisfy (1), i.e., xj > 0 for one j /∈ V

j /∈ V
def
⇒ ∃ S, j /∈ S, s.t. v(S) = 1 > x(S), so S blocks x, i.e. x /∈ core �

General necessary and sufficient conditions for the core to be non-empty: Bondareva

(1963) and Shapley (1967) (see Osborne and Rubinstein, 1994, pp. 262–263)
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A Production Economy

Firm (landowner): player 0

K workers: players 1, . . . ,K

k workers with the landowner can produce f(k) ≥ 0, where f ր, concave and

f(0) = 0. Without the landowner they produce nothing

➥















N = {0, 1, . . . , K}

v(S) =







0 if 0 /∈ S

f(|S| − 1) if 0 ∈ S

Core :
x0 + x1 + · · · + xK = f(K) (2)

xi ≥ 0, ∀ i (3)

x(S) ≥ f(|S| − 1) if 0 ∈ S (4)

(4) ⇒ x(N\i) ≥ f(K − 1) ∀ i 6= 0
(2)
⇒ f(K) − xi ≥ f(K − 1) ⇒

xi ≤ f(K) − f(K − 1) ∀ i 6= 0
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We showed that x ∈ core ⇒ x belongs to the set

x0 + x1 + · · · + xK = f(K) (2)

xi ≥ 0, ∀ i (3)

xi ≤ f(K) − f(K − 1), i = 1, . . . ,K (5)

Let us show the converse: let x be in this set

If 0 /∈ S then v(S) = 0 so x(S) ≥ v(S)

If 0 ∈ S then xi ≤ f(K) − f(K − 1) ∀ i ∈ N\S ⇒

x(N\S) ≤ (K − k)(f(K) − f(K − 1)), where k = |S| − 1 = nb of workers in S

⇒ x(S) ≥ f(K) − (K − k)(f(K) − f(K − 1))
concavity

≥ f(k) = v(S)

Conclusion: Each worker obtains at best his marginal productivity when all workers

are employed, and the landowner gets the remaining payoff
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Unionized Workers

➥ Only the group of K workers can accept to work

➠ v(S) =







f(K) if S = N

0 otherwise

⇒ core = {(x0, x1, . . . , xK) : xi ≥ 0 ∀ i,
∑

xi = f(K)}
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Main Defaults of the Core Solution Concept

① Often too large

② Often empty

③ Extreme and non-robust predictions

• Ex: No difference between veto power and dictator

• Ex: Shoes game

Shoes Game.

2 players, i = 1, 2, each have a left shoe

1 player, i = 3, has a right shoe

v(S) = 1 e for each pairs of shoes that coalition S can obtain
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x1 + x2 + x3 = 1

xi ≥ 0, ∀ i

x1 + x3 ≥ 1

x2 + x3 ≥ 1

⇒ Core = {(0, 0, 1)}

Similarly, if

1 000 001 players have a left shoe

1 000 000 players have a right shoe

the unique core allocation gives 1 e to each owner of a right shoe, and nothing to

owners of a left shoe

➠ Relative scarcity of right shoes ⇒ price = 0 for left shoes (competitive effect)

The Shapley value gives slightly more than 0.5 for right shoes and slightly less than

0.5 for left shoes
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Shapley Value

(September 3, 2007)

Classical solution concept for n-person cooperative games with transferable utility

(TU games)

Figure 2: Lloyd Shapley (1923– )

Like the Nash bargaining solution, the Shapley (1953) value is a solution concept

satisfying some reasonable axioms (+ existence and uniqueness)

Appropriate solution concept for problems of cost sharing or allocation of resources

(telecommunications, joint ownership, . . . )
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Characteristic function

v : 2N\∅ → R+

S 7→ v(S)

We are looking for a solution

ϕ(v) = (ϕi(v))i∈N

ϕi(v) is a power index for player i / a value of the game for player i
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Axioms

✦ Axiom 1. Pareto optimality (PAR).

n
∑

i=1

ϕi(v) = v(N)

✦ Axiom 2. Symmetry (SYM). If i and j are symmetric (substitutes), i.e.,

v(S ∪ {i}) = v(S ∪ {j}) ∀ S 6∋ i, j

then ϕi(v) = ϕj(v)
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✦ Axiom 3. Null player (NUL). If i is null, i.e.,

v(S ∪ {i}) = v(S) ∀ S 6∋ i

then ϕi(v) = 0

✦ Axiom 4. Linearity (LIN). Define (v + w)(S) = v(S) + w(S). Then,

ϕ(v + w) = ϕ(v) + ϕ(w)

(mathematical simplification, but no clear interpretation)
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Shapley Theorem. There exists one and only one solution ϕ satisfying the four

preceding axioms. It can be calculated explicitly:

ϕi(v) =
1

n !

∑

R

[

v(SR
i ∪ {i}) − v(SR

i )
]

where the sum (R) is over all n ! permutations of N

and SR
i ⊆ N is the coalition of players preceding i in order R (v(∅) = 0)

➥ ϕi(v) is a weighted sum of the marginal contributions of player i

Examples. (3 players)

• Simple majority / unanimity

PAR + SYM ⇒ ϕ1(v) = ϕ2(v) = ϕ3(v) = 1/3

• Dictator (player 2)

PAR + NUL ⇒ ϕ1(v) = ϕ3(v) = 0 and ϕ2(v) = 1
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• Veto power (of player 2)

PAR + SYM ⇒ ϕ1(v) = ϕ3(v) = [1 − ϕ2(v)]/2

We use the formula to calculate ϕ2(v) :

3 ! = 6 possible orders Marginal contributions of player 2

123 v(12) − v(1) = 1

132 v(132) − v(13) = 1

213 v(2) − v(∅) = 0

231 v(2) − v(∅) = 0

312 v(312) − v(31) = 1

321 v(32) − v(3) = 1

⇒ ϕ2(v) = 4/6 = 2/3

⇒ ϕ(v) = (1/6, 2/3, 1/6)
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Proposition. If the game is superadditive then the Shapley value satisfies

individual rationality:

ϕi(v) ≥ v(i) ∀ i ∈ N

Proof. Superadditivity ⇒ v(SR
i ∪ {i}) ≥ v(SR

i ) + v(i) ⇒

v(SR
i ∪ {i}) − v(SR

i ) ≥ v(i) ⇒ ϕi(v) = 1

n !

∑

R[v(SR
i ∪ {i}) − v(SR

i )] ≥ v(i) �

Shapley value in simple games

Simple games: v(S) = 0 or 1 for every S + Monotonicity

(T ⊆ S ⇒ v(T ) ≤ v(S))

Player i is pivotal in order R if v(SR
i ) = 0 and v(SR

i ∪ {i}) = 1

➡ ϕi(v) =
nb of orders in which i is pivotal

n !
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Electoral games and political power

Weighted Game :

We assign a weight qi ≥ 0 to each player i

Quota Q, where
∑

i∈N qi ≥ Q >
∑

i∈N qi

/

2

Coalition S is winning (v(S) = 1) iff
∑

i∈S qi ≥ Q

Examples

• 1 large party and 3 small parties.

Large party: 1/3 of the electorate q1 = 1/3

Small party: 2/9 of the electorate q2 = q3 = q4 = 2/9

Quota Q = 1/2 (simple majority)
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• 2 large parties and 3 small parties.
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Minimal winning coalitions: 1 large + 1 small or 3 small

4 equally likely positions for the large party

Pivotal positions: 2nd and 3rd ⇒ ϕ1(v) = 1/2 > q1 = 1/3

⇒ ϕ(v) =

(

1

2
,
1
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,
1

6
,
1

6

)

• 2 large parties and 3 small parties.

Large party: 1/3 of the electorate q1 = q2 = 1/3

Small party: 1/9 of the electorate q3 = q4 = q5 = 1/9

Minimal winning coalitions: 1 large + 2 small or 2 large
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Minimal winning coalitions: 1 large + 1 small or 3 small

4 equally likely positions for the large party

Pivotal positions: 2nd and 3rd ⇒ ϕ1(v) = 1/2 > q1 = 1/3

⇒ ϕ(v) =

(

1

2
,
1

6
,
1

6
,
1

6

)

• 2 large parties and 3 small parties.

Large party: 1/3 of the electorate q1 = q2 = 1/3

Small party: 1/9 of the electorate q3 = q4 = q5 = 1/9

Minimal winning coalitions: 1 large + 2 small or 2 large

4 equally likely order configurations for a large party, with 5 equally likely positions

in each
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● • • •

N
↑

P
↑

P N N

• ● • •

N N
↑

P N N

• • ● •

N N
↑

P N N

• • • ●

N N
↑

P
↑

P N

⇒ ϕ1(v) = ϕ2(v) = 6/20 = 3/10 < q1 = q2 = 1/3

⇒ ϕ(v) =

(

3

10
,

3

10
,

4

30
,

4

30
,

4

30

)
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• 2 large parties and n small parties, n→ ∞.

4 equally likely order configurations:

➊ 1 and 2 are both in the first half of the ordering

➋ 1 and 2 are both in the second half of the ordering

➌ 1 is in the first half and 2 is in the second half

➍ 2 is in the first half and 1 is in the second half

1 is pivotal in configuration ➊ if he is after 2, and in configuration ➋ if he is before

2, so he is pivotal in 1/8 + 1/8 = 1/4 of the situations

⇒ ϕ(v) =

(

1

4
,
1

4
,

1

2n
,

1

2n
, · · ·

)

Do small parties have an interest to unite?

No, because the game would be symmetric ⇒ small parties would share 1/3 instead

of 1/2
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Paradox of the new members of the European union council

1958 1973

Members Weight Shapley Val. Weight Shapley Val.

France 4 0.233 10 0.179

Germany 4 0.233 10 0.179

Italy 4 0.233 10 0.179

Belgium 2 0.150 5 0.081

Nethederlands 2 0.150 5 0.081

Luxembourg 1 0.000 2 0.010

Denmark – – 3 0.057

Ireland – – 3 0.057

United Kingdom – – 10 0.179

Quota 12 over 17 41 over 58
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Paradox of the new members of the European union council

1958 1973

Members Weight Shapley Val. Weight Shapley Val.

France 4 0.233 10 0.179

Germany 4 0.233 10 0.179

Italy 4 0.233 10 0.179

Belgium 2 0.150 5 0.081

Nethederlands 2 0.150 5 0.081

Luxembourg 1 0.000 2 0.010

Denmark – – 3 0.057

Ireland – – 3 0.057

United Kingdom – – 10 0.179

Quota 12 over 17 41 over 58

Luxembourg: null player in 1958. In 1973, relative weight ➘ but power ➚
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Cost Allocation

Value of a visit of H for A, B and C: 20 each. How to share transportation costs of

H between A, B and C?

2

44

7

6

8

A B

C

H v(A) = 20 − 14 = 6

v(B) = 4

v(C) = 8

v(AB) = 23

v(AC) = 23

v(BC) = 22

v(ABC) = 60 − 19 = 41
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Marginal Contributions

Possible orders A B C

ABC 6 17 18

ACB 6 18 17

BAC 19 4 18

BCA 19 4 18

CAB 15 18 8

CBA 19 14 8
∑

R 84 75 87

ϕ =
∑

R /n ! 14 12.5 14.5

Cost allocation 6 7.5 5.5

v(A) = 6

v(B) = 4

v(C) = 8

v(AB) = 23

v(AC) = 23

v(BC) = 22

v(ABC) = 41
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si(v): number of coalitions S ⊆ N in which i is a key player

➡ βi(v) =
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Example. (Veto power of player 2) (q1, q2, q3) = (1, 2, 1) Q = 3

Winning coalitions (key players underlined): 1 2 2 3 1 2 3
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i

si = 5
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Other Power Indexes

Banzhaf Index.

Player i is a key player in coalition S ∋ i if v(S\{i}) = 0 and v(S) = 1

si(v): number of coalitions S ⊆ N in which i is a key player

➡ βi(v) =
si(v)

∑

i∈N si(v)

➥ Relative number of coalitions in which i is a key player

Example. (Veto power of player 2) (q1, q2, q3) = (1, 2, 1) Q = 3

Winning coalitions (key players underlined): 1 2 2 3 1 2 3

⇒ s1 = s3 = 1, s2 = 3,
∑

i

si = 5

⇒ β =

(

1

5
,
3

5
,
1

5

)

6= ϕ =

(

1

6
,
2

3
,
1

6

)
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