Strategic Information Transmission: Persuasion Games

Outline

(November 22, 2007)

- The revelation principle revisited
 - Hard evidence and information certification in games
 - Geometric Characterization of Nash Equilibrium Outcomes
 - Sceptical strategies and worst case inferences in monotonic relationships
 - Persuasion with type-dependent biases (Seidmann and Winter, 1997)
 - Long persuasion games

Verifiable Information and Certification

Some private information like

individual preferences
 ideas
 the quality of a project
 the cost of effort

are usually non-certifiable / non-provable, and cannot be objectively measured by a 2/ third party

On the other hand,

- the health or income of an individual the debt of a firm
- the history of a car maintenance
 a doctor's degree

may be directly certified, or authenticated by a third party

How does one person make another believe something? The answer depends importantly on the factual question, "Is it true?" It is easier to prove the truth of something that is true than of something false. To prove the truth about our health we can call on a reputable doctor; to prove the truth about our costs or income we may let the person look at books that have been audited by a reputable firm or the Bureau of Internal Revenue. But to persuade him of something false we may have no such convincing evidence.

Schelling, 1960, p. 23.

3/

The information that **can** be revealed by a player may depend on his actual state of knowledge $\Rightarrow M_i(k)$: set of messages of player i when his type is k

- Physical proofs ("hard information")
 - Documents
 - Observable characteristics of a product
 - Endowments, costs
 - Income tax return

5/ Cl.: L.:

- Claims about health conditions
- Legal constraints
 - Revelation of accounting data
 - Advertisement, labels, guarantee of quality, ...
- Psychological constraints
 - Honesty / Observable emotions (blushing, stress ...)

The Revelation Principle Revisited

Set of possible announcements for an agent of type θ : $M(\theta) \subseteq \Theta$, with $\theta \in M(\theta)$

How an optimal mechanism and the revelation principle is affected by this new feature?

- → Green and Laffont (1986)
- 6/ Utility of the agent when his type is θ and the decision is $x \in X$:

$$u(x,\theta)$$

Direct *mechanism*:

$$x:\Theta\to X$$

(More generally, a mechanism is $x: \mathcal{M} \to X$, where \mathcal{M} is any set of messages)

An allocation, or social choice function $y:\Theta\to X$ is directly M-implementable if there exists a direct mechanism $x:\Theta\to X$ such that

$$x(m^*(\theta)) = y(\theta)$$

where m^{*} is the optimal reporting strategy of the agent, i.e.,

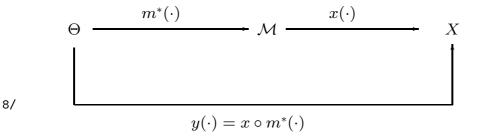
$$m^*(\theta) \in \arg\max_{m \in M(\theta)} u(x(m), \theta)$$

An allocation $y:\Theta \to X$ is directly and truthfully M-implementable if there exists a direct mechanism $x:\Theta \to X$ such that

$$x(m^*(\theta)) = y(\theta)$$

and $m^*(\theta)=\theta\in \arg\max_{m\in M(\theta)}u(y(m),\theta)$ for all $\theta\in\Theta$ (standard informational incentive constraint)

Standard setting (non-verifiable types): $M(\theta) = \Theta$ for all $\theta \in \Theta$, and the *revelation principle* applies: an allocation is implementable if and only if it is directly and truthfully implementable



Clearly, y generates the same allocation as x, and truthful revelation $m(\theta)=\theta$ is optimal for the agent with the new mechanism

The revelation principle does not apply, in general, with partially verifiable types

Example 1 (Failure of the revelation principle) $\Theta = \{\theta_1, \theta_2, \theta_3\}$, $X = \{x_1, x_2, x_3\}$,

$$M(\theta_1) = \{\theta_1, \theta_2\}$$

$$M(\theta_2) = \{\theta_2, \theta_3\}$$

$$M(\theta_3) = \{\theta_3\}$$

9/ $u = \begin{array}{ccccc} & & x_1 & x_2 & x_3 \\ \theta_1 & \boxed{0} & 1 & 2 \\ \theta_2 & 1 & \boxed{2} & 0 \\ \theta_3 & 0 & \boxed{1} & 2 \end{array}$

and $y(\theta_1) = x_1$, $y(\theta_2) = y(\theta_3) = x_2$

Clearly, y is not truthfully implementable (θ_1 claims to be $m^*(\theta_1) = \theta_2$)

Nevertheless, y can be implemented with the mechanism

$$x(\theta_1) = x(\theta_2) = x_1$$
$$x(\theta_3) = x_2$$

In this case, the optimal strategy of the agent in not truthful:

$$m^*(\theta_1) = \{\theta_1, \theta_2\}$$

$$m^*(\theta_2) = \theta_3$$

$$m^*(\theta_3) = \theta_3$$

10/

but y is implemented:

$$x \circ m^*(\theta_1) = x_1 = y(\theta_1)$$

 $x \circ m^*(\theta_2) = x_2 = y(\theta_2)$
 $x \circ m^*(\theta_3) = x_2 = y(\theta_3)$

Nested Range Condition

The message correspondence M satisfied the **Nested Range Condition (NRC)** if for all θ , $\theta' \in \Theta$, we have

$$\theta' \in M(\theta) \implies M(\theta') \subseteq M(\theta)$$

This condition is not satisfied in the previous example because $\theta_2 \in M(\theta_1)$ but $M(\theta_2) = \{\theta_2, \theta_3\} \nsubseteq M(\theta_1) = \{\theta_1, \theta_2\}$

Example where NRC is satisfied: unidirectional distortions. Letting Θ be ordered by \preceq , $M(\theta) = \{\tilde{\theta} \in \Theta : \tilde{\theta} \preceq \theta\}$ satisfies NRC

Application: claims about income or health that cannot be imitated by lower types

Proposition 1 (Green and Laffont, 1986) If M satisfies the Nested Range Condition then the revelation principle applies: for every decision set X and utility function $u: X \times \Theta \to \mathbb{R}$, the set of directly M-implementable allocations coincides with the set of directly and truthfully M-implementable allocations

Proof. Consider a mechanism x that implements allocation y, but assume that y is not truthfully implementable. We show that NRC is not satisfied

Since y is not truthfully implementable, there exist θ_1 and θ_2 such that $\theta_2 \in M(\theta_1)$ and

$$u(y(\theta_2), \theta_1) > u(y(\theta_1), \theta_1)$$

Since x implements y we have

- $x(\theta) \neq y(\theta_2)$ for all $\theta \in M(\theta_1)$ (otherwise, θ_1 deviates)
- $x(m^*(\theta_2)) = y(\theta_2)$, where $m^*(\theta_2) \in M(\theta_2)$

Hence:

13/

$$\theta_2 \in M(\theta_1)$$

$$m^*(\theta_2) \in M(\theta_2) \quad \Rightarrow \quad M(\theta_2) \nsubseteq M(\theta_1)$$

$$m^*(\theta_2) \notin M(\theta_1)$$

which violates NRC

General Mechanisms (not necessarily direct, with no restriction on communication)

$$x: \mathcal{M} \to X$$

where \mathcal{M} is any message set (not necessarily Θ)

Example 2 (Failure of the revelation principle 2) Consider Example 2 with another allocation $y(\theta_i)=x_i$

14/
$$M(\theta_{1}) = \{\theta_{1}, \theta_{2}\}$$

$$M(\theta_{2}) = \{\theta_{2}, \theta_{3}\}$$

$$M(\theta_{3}) = \{\theta_{3}\}$$

$$u = \begin{bmatrix} x_{1} & x_{2} & x_{3} \\ \theta_{1} & \boxed{0} & 1 & 2 \\ \theta_{2} & 1 & \boxed{2} & 0 \\ \theta_{3} & 0 & 1 & \boxed{2} \end{bmatrix}$$

Clearly, y is not directly implementable (truthfully or not)

However, it can be implemented by asking the agent to send two messages

$$M(\theta_1) = \{\theta_1, \theta_2\}$$
 $M(\theta_2) = \{\theta_2, \theta_3\}$
 $M(\theta_3) = \{\theta_3\}$
 $u = \begin{bmatrix} x_1 & x_2 & x_3 \\ \theta_1 & \boxed{0} & 1 & 2 \\ \theta_2 & 1 & \boxed{2} & 0 \\ \theta_3 & 0 & 1 & \boxed{2} \end{bmatrix}$

15/
$$\theta_1 \to (\theta_1, \theta_2) \in [M(\theta_1)]^2 \to x_1$$

$$\theta_2 \to (\theta_2, \theta_3) \in [M(\theta_2)]^2 \to x_2$$

$$\theta_3 \to (\theta_3, \theta_3) \in [M(\theta_3)]^2 \to x_3$$

Only θ_3 can be imitated by θ_2 , but θ_2 has no incentive to do so

How to construct a more general and appropriate correspondence of messages $R(\theta)\subseteq \mathcal{M}$ associated with M such that a revelation principle applies, and how to define truthful reporting strategies $r^*:\Theta\to\mathcal{M}$, with $r^*(\theta)\in R(\theta)$ for all θ ?

From any message correspondence $M(\theta)$ (taking values in any arbitrary set), we construct a *certifiability/verifiability configuration*

$$Y(\theta) \equiv \{M^{-1}(m) : m \in M(\theta)\}\$$

This set is the set of "certificates" or "proofs" available to type θ . Let $\mathcal{Y}=\bigcup_{\theta}Y(\theta)$ be the set of all certificates

The agent can combine certificates (e.g., sending two messages): Let $\mathcal C$ be the closure of $\mathcal Y$, i.e., the smallest set containing $\mathcal Y$ which is closed under intersection, and let

$$C(\theta) = \{c \in \mathcal{C} : \theta \in c\}$$

Example.

$$M(\theta_1) = \{\theta_1, \theta_2\}$$
 $M^{-1}(\theta_1) = \{\theta_1\}$
 $M(\theta_2) = \{\theta_2, \theta_3\}$ \Rightarrow $M^{-1}(\theta_2) = \{\theta_1, \theta_2\}$
 $M(\theta_3) = \{\theta_3\}$ $M^{-1}(\theta_3) = \{\theta_2, \theta_3\}$

so

17/
$$\mathcal{Y} = \{\{\theta_1\}, \{\theta_1, \theta_2\}, \{\theta_2, \theta_3\}\}$$

$$\mathcal{C} = \{\{\theta_1\}, \{\theta_2\}, \{\theta_1, \theta_2\}, \{\theta_2, \theta_3\}\}\$$

Complete certification:

$$c^*(\theta) = \bigcap_{c \in C(\theta)} c \ = \ \text{smallest element of} \ C(\theta)$$

Truthful strategy:

$$r^*(\theta) = (\theta, c^*(\theta)) \in \Theta \times C(\theta) \equiv R(\theta)$$

18/

Proposition 2 (Forges and Koessler, 2005) Whatever the message correspondence $M(\theta)$, $\theta \in \Theta$, the decision set X and the utility function $u: X \times \Theta \to \mathbb{R}$, the set of allocations that are M-implementable in a general communication system (allowing multiple communication stages, random mechanisms,...) coincides with the set of truthful R-implementable allocations

In examples 1 and 2

$$r^*(\theta_1) = (\theta_1, \{\theta_1\})$$

$$r^*(\theta_2) = (\theta_2, \{\theta_2\})$$

$$r^*(\theta_3) = (\theta_3, \{\theta_2, \theta_3\})$$

19/

Certifiable Information in Games

Unilateral persuasion game $\Gamma_S(p)$: defined as the unilateral cheap talk game $\Gamma^0_S(p)$, but the set of messages of the sender, M(k), depends on his type k

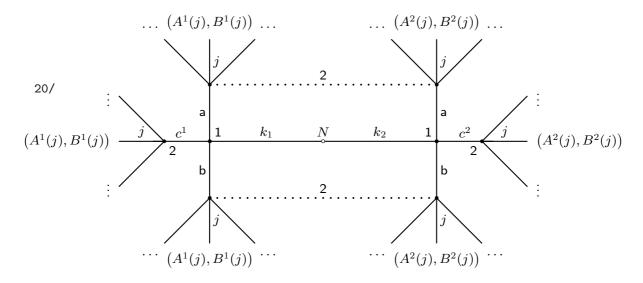


Figure 1: Extensive form of the unilateral persuasion game $\Gamma_S(p)$ with two types, two cheap talk messages and one certificate for each type

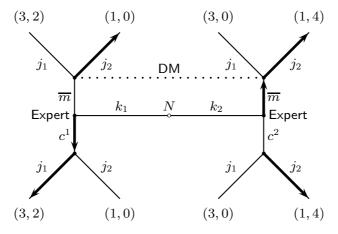
Examples

In example 3 recalled below the unique NE of the cheap talk game is NR ($j_2 \to (a,\beta) = ((1,1),2)$):

$$k_1 \frac{j_1 \quad j_2}{5,2 \quad 1,0} \qquad p = 1/2$$

21/ $k_2 = 3,0 = 1,4 = (1-p) = 1/2$

However, if type k_1 is able to prove his type, by sending a message (certificate) $m=c^1$ which is not available to type k_2 , then there is a FRE



22/

With certifiable information, there is also a (pure strategy) FRE in the monotonic games 1, 7 and 8, as well as in examples 2 and 5 where there already exists a FRE under cheap talk

On the contrary, examples 4 and 6 don't admit a FRE

Example 10.

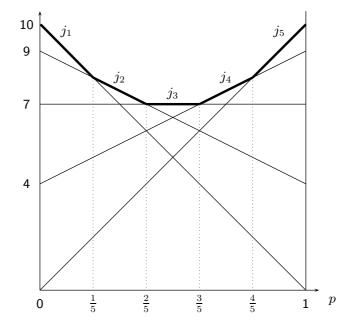
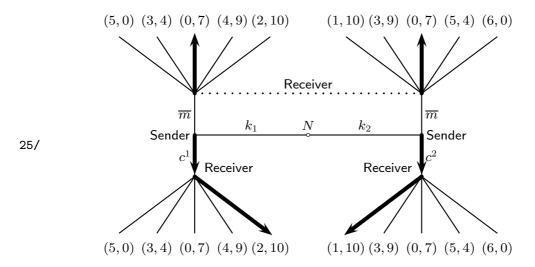


Figure 2: Expected payoffs (fine lines) and best reply expected payoffs (bold lines) for the $\ensuremath{\mathsf{DM}}$

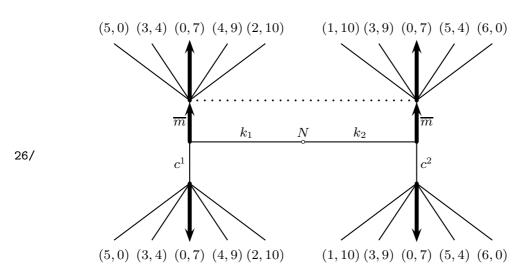
24/

Fully Revealing Equilibrium



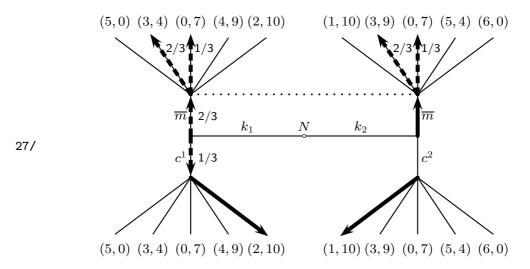
Interim expected payoffs: $(a, \beta) = ((2, 1), 10)$

Non-revealing Equilibrium



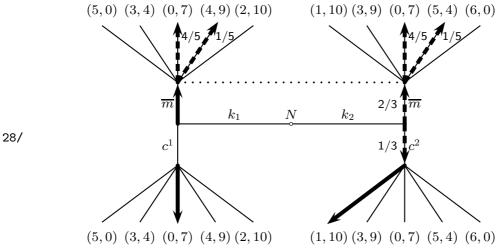
Interim expected payoffs: $(a, \beta) = ((0, 0), 7)$ (Note: this NE is not subgame perfect)

Partially Revealing Equilibrium: PRE1



Interim expected payoffs: $(a, \beta) = ((2, 2), 7.5)$

Partially Revealing Equilibrium: PRE2



Interim Expected Payoffs: $(a, \beta) = ((4/5, 1), 7.5)$ (Note: This NE is not subgame perfect)

Geometric Characterization of NE payoffs of $\Gamma_S(p)$

Recall: **Modified equilibrium payoffs** $\mathcal{E}^+(p)$ of $\Gamma(p)$: the expert can get a payoff higher than his equilibrium when his type has zero probability

- \implies $(a,\beta)\in\mathbb{R}^2\times\mathbb{R}$ such that there exists an optimal mixed action $y\in Y(p)$ of the silent game $\Gamma(p)$ satisfying
- (i) $a^k \ge A^k(y)$, for every $k \in K$;
- 29/ (ii) $a^1 = A^1(y)$ if $p \neq 0$ and $a^2 = A^2(y)$ if $p \neq 1$;
 - (iii) $\beta = p B^1(y) + (1-p) B^2(y)$.

Extended equilibrium payoffs $\mathcal{E}^{++}(p)$ of $\Gamma(p)$: the expert can have **any** payoff when his type has zero probability

 $ightharpoonup (a,\beta) \in \mathbb{R}^2 \times \mathbb{R}$ such that there exists $y \in Y(p)$ satisfying (ii) and (iii)

Graph of the extended equilibrium payoff correspondence:

$$\operatorname{gr} \mathcal{E}^{++} \equiv \{(a, \beta, p) \in \mathbb{R}^2 \times \mathbb{R} \times [0, 1] : (a, \beta) \in \mathcal{E}^{++}(p)\}$$

Graph of interim individually rational payoffs:

$$\mathsf{INTIR} \equiv \{(a,\beta,p) \in \mathbb{R}^2 \times \mathbb{R} \times [0,1] : \exists \ \overline{y} \in \Delta(J), \ a^k \geq A^k(\overline{y}) \ \forall \ k \in K\}$$

30/

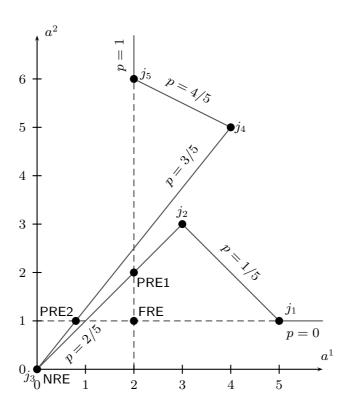
Forges and Koessler (2007, JET): If every event is certifiable, all Nash equilibrium payoffs of the unilateral persuasion game $\Gamma_S(p)$ can be geometrically characterized from the graph of the equilibrium payoff correspondence of the silent game

Assumptions:

- \bullet For every k there exists $c^k \in M^1$ such that $M^{-1}(c^k) = \{k\}$
- $|M(k_1) \cap M(k_2)| \ge 3$

Theorem (Characterization of $\mathcal{E}_S(p)$) Let $p \in (0,1)$. A payoff (a,β) is an equilibrium payoff of the unilateral persuasion game $\Gamma_S(p)$ if and only if (a,β,p) belongs to $\operatorname{conv}_a(\operatorname{gr} \mathcal{E}^{++}) \cap \operatorname{INTIR}$, the set of all points obtained by convexifying the set $\operatorname{gr} \mathcal{E}^{++}$ in (β,p) while keeping constant and individually rational the expert's payoff, a:

$$\mathcal{E}_S(p) = \{(a, \beta) \in \mathbb{R}^2 \times \mathbb{R} : (a, \beta, p) \in \mathsf{conv}_a(\mathsf{gr}\,\mathcal{E}^{++}) \cap \mathsf{INTIR}\}.$$



32/

Equilibrium Refinement in Persuasion Games

Contrary to the cheap talk case, a Nash equilibrium in a persuasion game may rely on irrational choices off the equilibrium path

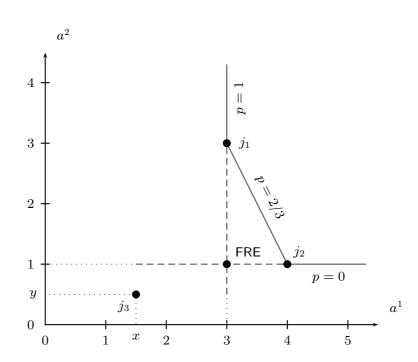
For instance, in example 10, the NRE and the PRE2 are not subgame perfect

Similarly, the NRE is not subgame perfect in the persuasion games associated with example 1 when p>1/4, example 2 for every p, example 3 when p<2/3, example 5 when $p\in(3/8,5/8)$, example 7 when $p\in(1/3,2/3)$, and example 8 when p>2/5

The example below, which is a modified version of example 4 by adding the strictly dominated action j_3 , has a subgame perfect FRE when $x \leq 3$ et $y \leq 1$, but it is not a perfect Bayesian equilibrium

$$k_1 = \frac{j_1 \quad j_2 \quad j_3}{3,2 \quad 4,0 \quad x,-1} \quad p$$
 $k_2 = 3,0 \quad 1,4 \quad y,-1 \quad (1-p)$

34/



Formally, in the geometric characterization of the theorem, the payoff $a=(a^1,a^2)$ of the expert should also satisfy

$$\begin{split} &\exists \ \overline{y}_1 \in Y(1) \ \text{t.q.} \ a^1 \geq A^1(\overline{y}_1) \\ &\exists \ \overline{y}_2 \in Y(0) \ \text{t.q.} \ a^2 \geq A^2(\overline{y}_2) \end{split}$$

for a subgame perfect NE (\Rightarrow north-east of FRE)

36/ and

35/

$$\exists \ p \in \Delta(K), \ \overline{y} \in Y(p) \ \text{t.q.} \ a^k \ge A^k(\overline{y}) \ \forall \ k \in K$$

for a perfect Bayesian equilibrium (\Rightarrow north-east of $[j_1,j_2]$)

Now, equilibrium = perfect Bayesian equilibrium

Is Certifiable Information always Better for the DM?

NO. A PBE of a cheap talk game may be better for the DM than all PBE of the persuasion game

Example 11.

37/

If every type is certifiable, the unique PBE consists for k_2 and k_3 to send the same message, different from k_1 's message. The associated payoff for the DM is 8/3

In the cheap talk game, there is a PBE in which types k_1 and k_2 send the same message, different from k_3 's message. The associated payoff for the DM is 10/3

Sceptical strategies in monotonic relationships

Monotonic game: For every k, $A^k(j)>A^k(j')\Leftrightarrow j>j'$ (or $A^k(j)< A^k(j')\Leftrightarrow j>j'$)

Assume that every type is certifiable:

$$\forall k \in K, \exists m \in M(k), M^{-1}(m) = \{k\}$$

Theorem Every monotonic game in which every type is certifiable has a perfect Bayesian equilibrium which is fully revealing

Proof. It suffices to consider the following *sceptical strategy* for the DM, consisting in choosing the minimal action among the set of actions that a best response for the types compatible with the message sent:

$$\tau(m) = \min\{j \in J : \exists \ k \in M^{-1}(m), j \in \arg\max_{j'} B^k(j')\}\$$

With no additional assumption, other equilibrium outcomes may exist

For instance, in the monotonic example 3, if $p \ge 2/3$, there is a PBE in which the expert always send the same message and the DM chooses action j_1

The FRE is unique if we assume that $J\subseteq\mathbb{R}$ and $B^k(j)$ is strictly concave in j for every k (Milgrom, 1981; Grossman, 1981; Milgrom and Roberts, 1986)

Persuasion with Type-Dependent Biases (Seidmann and Winter, 1997)

Generalization of the model of Crawford and Sobel (1982):

- Types of the expert: T = [0, 1], with prior p(t)
- ullet Actions of the DM: $A\subseteq \mathbb{R}$
- Utility of the expert: $u_1(a;t)$

40/

39/

- Utility of the DM: $u_2(a;t)$
- ullet Messages of the expert of type $t \in T$: M(t)

A set of type $L\subseteq T$ is said certifiable if there is a message m, denoted by "L", which certifies $L\colon\exists\ m\in M$ s.t. $M^{-1}(m)=L$

Assumption: $M^{-1}(m)$ is closed, and every singleton $\{t\}$ is certifiable

Assumption A1. (Preference of the DM) For every $t \in T$, $u_2(\cdot;t)$ is concave in a, and

$$a_2^*(t) = \arg\max_{a \in A} u_2(a;t)$$

is unique for every t, continuous and strictly concave in t

Assumption A2. (Preference of the expert) For every $t \in T$, $u_1(\cdot;t)$ is strictly concave in a, and

$$a_1^*(t) = \arg\max_{a \in A} u_1(a;t)$$

41/

is unique for every t, C^1 and strictly increasing in t

Remarks.

ullet The assumptions of the **general** model of Crawford and Sobel (1982) are stronger: here, the bias $D(t)=a_2^*(t)-a_1^*(t)$ is type dependent and may change sign

• All results below apply (and are easy to prove) if we replace A2 by the monotonicity assumption, i.e., $u_1(\cdot;t)$ strictly increasing in a (so that $a_1^*(t)$ does not depend on t). See Milgrom (1981), Milgrom and Roberts (1986)

Simple class of preferences satisfying A1 and A2:

$$\begin{cases} u_1(a;t) = -[a - a_1^*(t)]^2, & a_1^*(t) = \alpha + \beta t \\ u_2(a;t) = -[a - a_2^*(t)]^2, & a_2^*(t) = \gamma + \delta t \end{cases}$$

42/

where β , $\delta > 0$

Example of Crawford and Sobel (1982): $\alpha = b, \ \beta = \delta = 1, \ \gamma = 0$

A1 + individual rationality \Rightarrow the DM plays $a_1^*(l)$ for some $l \in co(L)$ when he receives message "L" (along and off the equilibrium path)

Definition $l \in T$ is a worst case inference for message "L", $l \in wci(L)$, if $l \in co(L)$ and

$$u(a_2^*(t);t) \ge u(a_2^*(l);t), \quad \forall l \in L$$

Proposition 3 Under assumption A1 there is a FRE iff every certifiable subset of types has a worst case inference

Proof. △ By definition

43/

• Let $D(t) = a_2^*(t) - a_1^*(t)$

 $A1 + A2 \Rightarrow D(t)$ is well defined and continuous

 $\bullet \ \ \text{For every closed} \ L\subseteq T \text{, let}$

$$L_{+} = \max\{t \in L\} \qquad L_{-} = \min\{t \in L\}$$

Theorem If A1, A2 and either

- (a) D(t) does not change sign on T, or
- (b) D(t) changes sign only once on T, and D(0) > 0

then there is a FRE, and every equilibrium is FR

Proof.

44/
$$riangleq$$
 Existence. Easy. In case (a) with $D(t) \leq 0$, $L_- \in \mathrm{wci}(L)$; in case (a) with $D(t) \geq 0$, $L_+ \in \mathrm{wci}(L)$; in case (b), $t^* \in \mathrm{wci}(L)$, where $D(t^*) = 0$

Examples.

ullet General model of Crawford and Sobel (1982), where D(t)>0 or D(t)<0

45/

46/

• Previous parametric class:

$$D(t) = a_2^*(t) - a_1^*(t) = (\gamma - \alpha) + (\delta - \beta) t$$

If $\beta \geq \delta$ then (a) or (b) so there is a unique, FRE

If $\beta < \delta$ then (a) is satisfied iff $\alpha - \gamma \notin (0, \delta - \beta)$

The theorem does not apply when $\alpha - \gamma \in (0, \delta - \beta)$, i.e., when D(t) is increasing and changes sign, for example when $\alpha = \beta = 1$, $\gamma = 0$, $\delta = 5$, D(t) = -1 + 4 t

However, there is still a FRE, as shown in the next theorem, but it is not unique and the worst case inference is not obvious

Assumption A3. (Preference of the expert: "Single crossing") If

$$u_1(\overline{a};\underline{t}) \ge u_1(\underline{a};\underline{t}), \text{ where } \overline{a} > \underline{a}$$

then, for every $\overline{t} > \underline{t}$ we have

$$u_1(\overline{a};\overline{t}) > u_1(\underline{a};\overline{t})$$

Property. Under A2, if $u_1(\cdot;t)$ is symmetric around $a_1^*(t)$ for every t then A3 is satisfied (particular case: quadratic preferences)

Theorem Under A1, A2 and A3 there is a FRE, but may not be unique

The theorem applies with quadratic preferences, in particular in the previous example when $D(t)=-1+4\ t$ is increasing:

$$a_1^*(t) = \alpha + \beta \ t = 1 + t$$

$$a_2^*(t) = \gamma + \delta t = 5 t$$

However, if for instance the prior p is uniform on T, there is also a partially revealing equilibrium (se Seidmann and Winter, 1997)

Long Persuasion Games

In the unilateral persuasion game associated with Example 10 recalled below

48/

the highest payoff for the expert is (2,2) at the partially revealing equilibrium PRE1

However, in the 3-stage bilateral persuasion game, there is an equilibrium in which the expert can get (3,3) by delaying information certification

Stage 1: Signaling

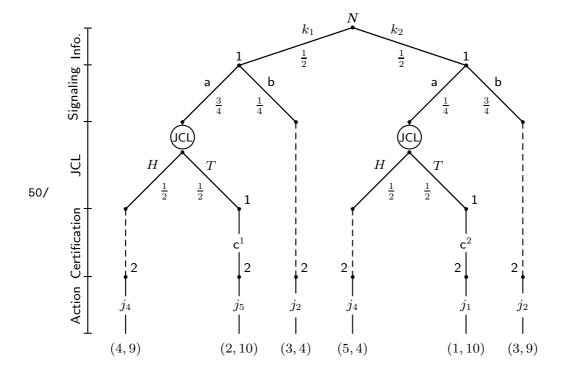
The expert sends message a or b with a type dependent positive probability Equilibrium condition: he must be indifferent between sending a or b, whatever his type

Stage 2: Jointly controlled lottery (JCL)

Both players decide jointly on how to continue the game

Stage 3: Possible certification

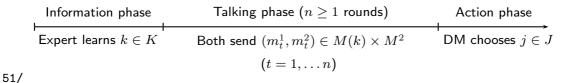
According to the outcome of the JCL, either P2 makes his decision immediately or P1 first fully certifies his type



49/

 $\Gamma_n(p)$: Information and actions phases as in the signalling game $\Gamma_S(p)$ but

- ullet Bilateral communication. Player 2's message set M^2 , $|M^2| \geq 2$
- \bullet $n \ge 1$ communication rounds, perfect monitoring

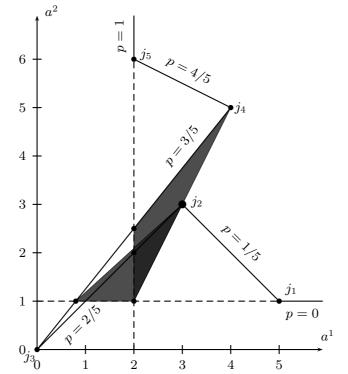


 $\mathcal{E}_n(p)$: Nash equilibrium payoffs of $\Gamma_n(p)$

 $\mathcal{E}_B(p) = \bigcup_{n \geq 1} \mathcal{E}_n(p)$: NE payoffs of all multistage, bilateral persuasion games

Theorem (Characterization of $\mathcal{E}_B(p)$) Let $p \in (0,1)$. A payoff (a,β) is an equilibrium payoff of a multistage bilateral persuasion game $\Gamma_n(p)$, for some length n, if and only if (a,β,p) belongs to di-co $(\operatorname{gr} \mathcal{E}^{++}) \cap \operatorname{INTIR}$, the set of all points obtained by diconvexifying the set of all payoffs in $\operatorname{gr} \mathcal{E}^{++}$ that are interim individually rational for the expert:

$$\mathcal{E}_B(p) = \{(a, \beta) \in \mathbb{R}^2 \times \mathbb{R} : (a, \beta, p) \in \mathsf{di\text{-}co}\,(\mathrm{gr}\,\mathcal{E}^{++}) \cap \mathsf{INTIR}\}.$$



53/

54/

References

CRAWFORD, V. P. AND J. SOBEL (1982): "Strategic Information Transmission," *Econometrica*, 50, 1431–1451.

FORGES, F. AND F. KOESSLER (2005): "Communication Equilibria with Partially Verifiable Types," *Journal of Mathematical Economics*, 41, 793–811.

——— (2007): "Long Persuasion Games," Journal of Economic Theory, forthcoming.

GREEN, J. R. AND J.-J. LAFFONT (1986): "Partially Verifiable Information and Mechanism Design," Review of Economic Studies, 53, 447–456.

GROSSMAN, S. J. (1981): "The Informational Role of Warranties and Private Disclosure about Product Quality," Journal of Law and Economics, 24, 461–483.

MILGROM, P. (1981): "Good News and Bad News: Representation Theorems and Applications," *Bell Journal of Economics*, 12, 380–391.

MILGROM, P. AND J. ROBERTS (1986): "Relying on the Information of Interested Parties," Rand Journal of Economics, 17, 18–32.

SCHELLING, T. (1960): The Strategy of Conflict, Harvard University Press.

SEIDMANN, D. J. AND E. WINTER (1997): "Strategic Information Transmission with Verifiable Messages," *Econometrica*, 65, 163–169.